• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2016, Vol. 52 ›› Issue (23): 102-113.doi: 10.3901/JME.2016.23.102

• 机构学及机器人 • 上一篇    下一篇

并联机构的结构降耦原理及其设计方法*

沈惠平, 朱小蓉, 尹洪波, 李菊, 邓嘉鸣   

  1. 常州大学现代机构学研究中心 常州 213164
  • 出版日期:2016-12-05 发布日期:2016-12-05
  • 作者简介:

    沈惠平,男,1965年出生,博士,教授,博士研究生导师。主要研究方向为并联机构、机器人机构学。

    E-mail:shp65@126.com

  • 基金资助:
    * 国家自然科学基金(51375062, 51075045, 51475039, 51475050)、江苏省重点研发计划(BE2015043)和江苏省科技成果转化专项资金(BA2015098)资助项目; 20160325收到初稿,20160824收到修改稿;

Principle and Design Method for Structure Coupling-reducing of
Parallel Mechanisms

SHEN Huiping, ZHU Xiaorong, YIN Hongbo, LI Ju, DENG Jiaming   

  1. Research Center for Advanced Mechanism Theory, Changzhou University, Changzhou 213164
  • Online:2016-12-05 Published:2016-12-05

摘要:

机构学的难题之一是寻找机构拓扑结构学与运动学、动力学之间的映射规律。前期研究表明,降低机构的结构耦合度可直接降低机构运动学、动力学求解的难度,这揭示了机构拓扑结构学与运动学、动力学之间的关系之一,因此,如何降低机构的结构耦合度已成为机构拓扑结构优化的重要内容,但目前国内外研究很少。研究并联机构的结构降耦原理、设计方法及其应用。定义并联机构结构降耦的概念,澄清并揭示机构结构降耦与机构运动解耦之间的内在区别与联系。从并联机构支链本身的拓扑结构以及支链在动/静平台之间布置的拓扑结构两方面,提出保持并联机构自由度和方位特征不变而降低机构耦合度的两个结构降耦原理,据此,进一步提出了基于设计混合支链的、基于运动副复合的、基于方位特征支链主动化的三种结构降耦设计方法,并分别给出设计例子,得到相应的自由度和方位特征保持不变但耦合度降低的新机构,为其应用研究提供了优选机型。提出的机构结构降耦原理与设计方法,适用于所有的复杂平面和空间平面。

关键词: 结构降耦, 拓扑结构, 拓扑结构优化, 位置正解, 运动解耦, 运动学, 并联机构

Abstract:

One of the difficult issues is to discover the mapping laws among the topological structure, kinematics and dynamics of mechanisms. The previous work shows that reducing the structure coupling degree can reduce the complexity of solutions of kinematics and dynamics, which reveals one of the relations among topological structure characteristics, kinematics and dynamics. Therefore how to reduce the structure coupling-degree will become an important issue for topological structure optimization of mechanism but is little being studied so far. The principle, design methods and application of the structure coupling-reducing (SCR) are studied. A concept of the SCR is defined. The differences and connections between the SCR and motion decoupling are also revealed. From analyzing topological structures both branched chain itself and branched chains layout between the moving and the static platform of parallel mechanism, two principles and three methods for the SCR are proposed. These three methods are hybrid branched chains method, superposing kinematic joints method, and changing position and orientation characteristics branched chains into driving branched chains method, respectively. Corresponding examples of the SCR are given and some novel mechanisms with low coupling degrees are obtained. The principles and methods for the SCR can be applied to all complex planar mechanisms and spatial mechanisms.

Key words: forward position solutions, kinematics, motion decoupling, structure coupling-reducing, topological structure, topological structure optimization, parallel mechanisms