[1] TOUBOUL M, CREPIN J, ROUSSELIER G, et al. Identification of local viscoplastic properties in P91 welds from full field measurements at room temperature and 625 ℃[J]. Experimental Mechanics, 2013, 53(3):455-468. [2] MILOVIĆ L, VUHERER T, BLAČIĆ I, et al. Microstructures and mechanical properties of creep resistant steel for application at elevated temperatures[J]. Materials & Design, 2013, 46:660-667. [3] DAS C R, ALBERT S K, BHADURI A K, et al. Understanding room temperature deformation behavior through indentation studies on modified 9Cr-1Mo steel weldments[J]. Materials Science and Engineering:A, 2012, 552:419-426. [4] ESLAMI J, HOXHA D, GRGIC D. Estimation of the damage of a porous limestone using continuous wave velocity measurements during uniaxial creep tests[J]. Mechanics of Materials, 2012, 49:51-65. [5] JAIN P, GODBOLE M. Review of magnetic hysteresis-based NDE of creep damage in power plant steels[J]. Insight - Non-Destructive Testing and Condition Monitoring, 2012, 54(3):128-133. [6] PRAJAPATI S, NAGY P B, CAWLEY P. Potential drop detection of creep damage in the vicinity of welds[J]. NDT & E International, 2012, 47:56-65. [7] AUGUSTYNIAK B, CHMIELEWSKI M, SABLIK M J, et al. A new eddy current method for nondestructive testing of creep damage in austenitic boiler tubing[J]. Nondestructive Testing and Evaluation, 2009, 24(1-2):121-141. [8] GUPTA C, TODA H, SCHLACHER C, et al. Study of creep cavitation behavior in tempered martensitic steel using synchrotron micro-tomography and serial sectioning techniques[J]. Materials Science and Engineering:A, 2013, 564:525-538. [9] PARKER J, COLEMAN K, SIEFERT J, et al. Challenges with NDE and weld repair of creep strength enhanced ferritic steels [J]. Advanced Materials & Processes, 2012, 170(10):20-22. [10] SPOSITO G, WARD C, CAWLEY P, et al. A review of non-destructive techniques for the detection of creep damage in power plant steels[J]. NDT & E International, 2010, 43(7):555-567. [11] KIM C, HYUN C, PARK I, et al. Ultrasonic characterization for directional coarsening in a nickel-based superalloy during creep exposure[J]. Journal of Nuclear Science and Technology, 2012, 49(4):366-372. [12] HATANAKA H, IDO N, ITO T, et al. Ultrasonic creep damage detection by frequency analysis for boiler piping[J]. Journal of Pressure Vessel Technology, 2007, 129(4):713. [13] SZELĄŻEK J, MACKIEWICZ S, KOWALEWSKI Z L. New samples with artificial voids for ultrasonic investigation of material damage due to creep[J]. NDT & E International, 2009, 42(2):150-156. [14] GYEKENYESI A L, KAUTZ H E, SHANNON R E. Quantifying creep damage in a metallic alloy using acousto-ultrasonics[J]. Journal of Materials Engineering and Performance, 2002, 11(2):205-210. [15] 李志农, 张芬, 肖尧先. 基于 CVA-ICA 的机械故障源动态盲分离方法[J]. 机械工程学报, 2015, 51(12):24-29. LI Zhinong, ZHANG Fen, XIAO Yaoxian. Dynamic blind separation of mechanical fault sources based on canonical variate analysis and independent component analysis[J]. Journal of Mechanical Engineering, 2015, 51(12):24-29. [16] 张杰, 张周锁, 朱冠汶, 等. 多元消减约束独立分量分析及其在振源贡菲量计算中的应用[J]. 机械工程学报, 2014, 50(5):57-64. ZHANG Jie, ZHANG Zhousuo, ZHU Guanwen, et al. Multi-unit deflation constraint independent component analysis and its application to source contribution estimation[J]. Journal of Mechanical Engineering, 2014, 50(5):57-64. [17] 余先川, 胡丹. 盲源分离理论与应用[M]. 北京:科学出版社, 2011. YU Xianchuan, HU Dan. Theory and application of blind source separation[M]. Beijing:Science Press, 2011. [18] WANG Junfeng, SHI Tielin, HE Lingsong, et al. Frequency overlapped signal identification using blind source separation[J]. Chinese Journal of Mechanical Engineering, 2006, 19(2):286-289. |