Journal of Mechanical Engineering ›› 2018, Vol. 54 ›› Issue (13): 34-46.doi: 10.3901/JME.2018.13.034
Previous Articles Next Articles
BI Shusheng1, LIU Chang1, ZHOU Xiaodong2, YU Jingjun1
Received:
2017-07-15
Revised:
2017-10-31
Online:
2018-07-05
Published:
2018-07-05
CLC Number:
BI Shusheng, LIU Chang, ZHOU Xiaodong, YU Jingjun. Variable Stiffness Actuators: A Review of the Structural Research[J]. Journal of Mechanical Engineering, 2018, 54(13): 34-46.
[1] ROBINSON D W. Design and analysis of series elasticity in Cclosed-loop actuator force control[D]. MIT, 2000. [2] READMANN M. Flexible joint robots[M]. CRC Press, 1994. [3] CANNON R H, SCHMITZ E. Initial experiments on the end-point control of a flexible one-link robot[J]. The International Journal of Robotics Research, 1984, 3(3):62-75. [4] CANNON R H, ROSENTHAL D E. Experiments in control of flexible structures with noncolocated sensors and actuators[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(5):546-553. [5] STIEHL W D,LIEBERMAN J,BREAZEAL C,et al. The huggable:A therapeutic robotic companion for relational, affective touch[C]//20063rd IEEE Consumer Communications and Networking Conference, New York, USA:2006:1290-1291. [6] GORIS K, SALDIEN J, VANDERBORGHT B, et al. How to achieve the huggable behavior of the social robot Probo? A reflection on the actuators[J]. Mechatronics, 2011, 21(3):490-500. [7] HUSSAIN S, XIE S Q, JAMWAL P K, et al. An intrinsically compliant robotic orthosis for treadmill training[J]. Medical Engineering and Physics, 2012, 34(10):1448-1453. [8] GARCIA E, JUAN C A, GUSTAVO M, et al. On the biomimetic design of agile-robot legs[J]. Sensors, 2011, 11(12):11133-11305. [9] RIESE S, ANDRE S. Robustness and efficiency of a variable-leg-spring hopper[C]//Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy:2012:1347-1352. [10] ROOZING W, VISSER L C, CARLONI R. Variable bipedal walking gait with variable leg stiffness[C]//5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, São Paulo, Brazil:2014:931-938. [11] HURST J W,CHESTNUTT J E,RIZZI A A. The actuator with mechanically adjustable series compliance[J]. IEEE Transactions on Robotics, 2010, 26(4):597-606. [12] DOPPMANN C, UGURLU B, HAMAYA M, et al. Towards balance recovery control for lower body exoskeleton robots with variable stiffness actuators:Spring-loaded flywheel model[C]//2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle,Washington:2015:5551-5556. [13] BLAYA J A, HERR H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2004, 12(1):24-31. [14] HADDADIN S, HUBER F, ALBU-SCHAFFER A. Optimal control for exploiting the natural dynamics of Variable Stiffness robots[C]//Robotics and Automation (ICRA), 2012 IEEE Internat, Saint Paul, MN:2012:3347-3354. [15] GARABINI M, PASSAGLIA A, BELO F, et al. Optimality principles in variable stiffness control:The VSA hammer[C]//IEEE International Conference on Intelligent Robots and Systems, San Francisco, California:IEEE, 2011:3770-3775. [16] HADDADIN S, LAUE T, FRESE U, et al. Kick it with elasticity:Safety and performance in human-robot soccer[C]//2nd Workshop on Humanoid Soccer Robots, Pittsburgh, PA:2009:761-775. [17] GREBENSTEIN M, ALBU-SCHAFFER A, BAHLS T, et al. The DLR hand arm system[C]//2011 IEEE International Conference on Robotics and Automation, Shanghai, China:IEEE, 2011:3175-3182. [18] PRATT G A, WILLIAMSON M M, DILLWORTH P, et al. Stiffness isn't everything[M]. Experimental Robotics IV, London:Springer-Verlag, 1995. [19] MORITA T, SUGANO S. Development of an anthropomorphic force-controlled manipulator WAM-10[C]//Advanced Robotics, 1997. ICAR '97. Proceedings, 8th International Conference on, Monterey, CA:IEEE, 1997:701-706. [20] WHITNEY D E. Historical perspective and state of the art in robot force control[J]. The International Journal of Robotics Research, 1987, 6(3):3-14. [21] HOGAN N. Impedance control:An approach to manipulation:Part I-theory[J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107(1):1-7. [22] HOLLERBACH J M, HUNTER I, BALLANTYNE J. A comparative analysis of actuator technologies for robotics[M]. Cambridge:MIT Press, 1992. [23] PRATT G A, WILLIAMSON M M. Series elastic actuators[C]//1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, ‘Human Robot Interaction and Cooperative Robots’, Pittsburgh, PA, USA:IEEE Comput. Soc. Press, 1995, 1(1524):399-406. [24] METTIN U, LA HERA P X, FREIDOVICH L B, et al. Parallel elastic actuators as a control tool for preplanned trajectories of underactuated mechanical systems[J]. The International Journal of Robotics Research, 2010, 29(9):1186-1198. [25] HURST J W, RIZZI A A. Series compliance for an efficient running gait[J]. Robotics & Automation Magazine IEEE, 2008, 15(3):42-51. [26] YAMAGUCHI J, TAKANISHI A. Development of a biped walking robot having antagonistic driven joints using nonlinear spring mechanism[C]//Proceedings of International Conference on Robotics and Automation, Albuquerque, NM:1997:185-192. [27] JAFARI A, TSAGARAKIS N G, BRAM V, et al. An intrinsically safe actuator with the ability to adjust the stiffness[C]//7th IARP Workshop on Technical Challenges for Depe, 2010. [28] PARK J, SONG J. Safe joint mechanism using inclined link with springs for collision safety and positioning accuracy of a robot arm[C]//2010 IEEE International Conference on Robotics and Automation, Anchorage, AK:IEEE, 2010:813-818. [29] JAFARI A, TSAGARAKIS N G, CALDWELL D G. Exploiting natural dynamics for energy minimization using an actuator with adjustable stiffness (AwAS)[C]//IEEE International Conference on Robotics and Automation ICRA, Shanghai, China:IEEE, 2011:4632-4637. [30] VU H Q, YU X, ⅡDA F, et al. Improving energy efficiency of hopping locomotion by using a variable stiffness actuator[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1):472-486. [31] JOSEPH C W, BRADSHAW E J, KEMP J, et al. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running[J]. Journal of Applied Biomechanics, 2013, 29(4):386-394. [32] WOLF S, GRIOLI G, EIBERGER O, et al. Variable stiffness actuators:Review on design and components[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2418-2430. [33] HAM R, SUGAR T, VANDERBORGHT B, et al. Compliant actuator designs[J]. IEEE Robotics & Automation Magazine, 2009, 16(3):81-94. [34] VANDERBORGHT B, ALBU-SCHAEFFER A, BICCHI A, et al. Variable impedance actuators:A review[J]. Robotics and Autonomous Systems, 2013, 61(12):1601-1614. [35] TSAGARAKIS N G, LAFFRANCHI M, VANDERBORGHT B, et al. A compact soft actuator unit for small scale human friendly robots[C]//IEEE International Conference on Robotics and Automation, Kobe, Japan:IEEE, 2009:4356-4362. [36] BIGGE B, HARVEY I R. Programmable springs:Developing actuators with programmable compliance for autonomous robots[J]. Robotics and Autonomous Systems, 2007, 55(9):728-734. [37] VAN HAM R, BRAM V, VAN DAMME M, et al. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator:Design and implementation in a biped robot[J]. Robotics and Autonomous Systems, 2007, 55(10):761-768. [38] FURNEMONT R, MATHIJSSEN G, VAN DER HOEVEN T, et al. Torsion MACCEPA:A novel compact compliant actuator designed around the drive axis[C]//IEEE International Conference on Robotics and Automation, Seattle, Washington:IEEE, 2015:232-237. [39] WOLF S, HIRZINGER G. A new variable stiffness design:Matching requirements of the next robot generation[C]//IEEE International Conference on Robotics and Automation, Pasadena, CA:IEEE, 2008:1741-1746. [40] SEBASTIAN W, OLIVER E, GERD H. The DLR FSJ:Energy based design of a variable stiffness joint[C]//IEEE International Conference on Robotics and Automation, Shanghai, China:IEEE, 2011:5082-5089. [41] WU Y, LAN C. Design of a linear variable-stiffness mechanism using preloaded bistable beams[C]//IEEE ASME International Conference on Advanced Intelligent Mechatronics, Besançon, France:IEEE, 2014:605-610. [42] BRAM V, TSAGARAKIS N G, VAN HAM R, et al. MACCEPA 2.0:Compliant actuator used for energy efficient hopping robot Chobino1D[J]. Autonomous Robots, 2011, 31(1):55-65. [43] ENGLISH C E, RUSSELL D. Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs[J]. Mechanism and Machine Theory,1999, 34(1):7-25. [44] TONIETTI G, SCHIAVI R, BICCHI A. Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction[C]//IEEE International Conference on Robotics and Automation, Barcelona, Spain:IEEE, 2005:526-531. [45] PETIT F, FRIEDL W, HOPPNER H, et al. Analysis and synthesis of the bidirectional antagonistic variable stiffness mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2):684-695. [46] HURST J W, CHESTNUTT J E, RIZZI A A. An actuator with physically variable stiffness for highly dynamic legged locomotion[C]//IEEE International Conference on Robotics and Automation, New Orleans, LA:IEEE, 2004:4662-4667. [47] EIBERGER O, HADDADIN S, WEIS M, et al. On joint design with intrinsic variable compliance:Derivation of the DLR QA-joint[C]//IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA:IEEE, 2010:1687-1694. [48] GROOTHUIS S S, RUSTICELLI G, ZUCCHELLI A, et al. The vsaUT-Ⅱ:A novel rotational variable stiffness actuator[C]//Robotics and Automation (ICRA), 2012 IEEE International Conference on, Saint Paul, MN:IEEE, 2012:3355-3360. [49] JAFARI A, TSAGARAKIS N G, VANDERBORGHT B, et al. A novel actuator with adjustable stiffness (AwAS)[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nakao Manabu:IEEE, 2010:4201-4206. [50] JAFARI A, TSAGARAKIS N G, CALDWELL D G. A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS)[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1):355-365. [51] VISSER L C, CARLONI R, UNAL R, et al. Modeling and design of energy efficient variable stiffness actuators[C]//IEEE International Conference on Robotics and Automation, Anchorage, AK:IEEE, 2010:3273-3278. [52] KIM B S. Design and control of a variable stiffness actuator based on adjustable moment arm[J]. IEEE Transactions on Robotics, 2012, 28(5):1145-1151. [53] TSAGARAKIS N G, IRENE S, CALDWELL D G. A new variable stiffness actuator (CompAct-VSA):Design and modelling[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA:IEEE, 2011:378-383. [54] JAFARI A, TSAGARAKIS N G, SARDELLITTI I, et al. A new actuator with adjustable stiffness based on a variable ratio lever mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1):55-63. [55] SARDELLITTI I, MEDRANO-CERDA G, TSAGARAKIS N G, et al. A position and stiffness control strategy for variable stiffness actuators[C]//IEEE International Conference on Robotics and Automation, Saint Paul, MN:IEEE, 2012:2785-2791. [56] MATTEO F, EAMON B, STEFANO S, et al. The mVSA-UT:A miniaturized differential mechanism for a continuous rotational variable stiffness actuator[C]//20124th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy:IEEE, 2012:1943-1948. [57] QUY H V, ARYANANDA L, SHEIKH F I, et al. A novel mechanism for varying stiffness via changing transmission angle[C]//IEEE International Conference on Robotics and Automation, Shanghai:IEEE, 2011:5076-5081. [58] GROOTHUIS S, CARLONI R, STRAMIGIOLI S. A novel variable stiffness mechanism capable of an infinite stiffness range and unlimited decoupled output motion[J]. Actuators, 2014, 3(2):107-123. [59] HOLLANDER K W, SUGAR T G, HERRING D E. Adjustable robotic tendon using a ‘Jack Spring’TM[C]//9th International Conference on Rehabilitation Robotics, Chicago, IL, USA:IEEE, 2005:113-118. [60] MORITA T, SUGANO S. Design and development of a new robot joint using a mechanical impedance adjuster[C]//IEEE International Conference on Robotics and Automation, Nagoya:IEEE, 1995:2469-2475. [61] REN-JENG W, PANG H H. Mechanically stiffnessadjustable actuator using a leaf spring for safe physical human-robot interaction[J]. MECHANIKA, 2012, 18(1):77-83. [62] TAO Y, WANG T, WANG Y, et al. Design and modeling of a new variable stiffness robot joint[C]//Multisensor Fusion and Information Integration for Intelligent Systems (MFI), 2014 International Conference on, Beijing:IEEE, 2014:1-5. [63] JUNHO C, SEONGHUN H, WOOSUB L, et al. A robot joint with variable stiffness using leaf springs[J]. IEEE Transactions on Robotics, 2011, 27(2):229-238. [64] JUNHO C, SEONGHUN H, WOOSUB L, et al. A variable stiffness joint using leaf springs for robot manipulators[C]//IEEE International Conference on Robotics and Automation, Kobe, Japan:IEEE, 2009:4363-4368. [65] SCHIMMELS J M, GARCES D R. The arched flexure VSA:A compact variable stiffness actuator with large stiffness range[C]//IEEE International Conference on Robotics and Automation, Seattle, WA:IEEE, 2015:220-225. [66] 王伟,刘立冬,魏来,等. 柔性齿条式变刚度关节驱动器设计与研究[J]. 机械工程学报, 2016, 52(1):26-33. WANG Wei, LIU Lidong, WEI Lai, et al. Design and research of rack-based variable stiffness actuator[J]. Journal of Mechanical Engineering, 2016, 52(1):26-33. [67] 何广平, 李士明. 可调刚度弹性机器人关节研究与设计[J]. 北方工业大学学报. 2012, 24(3):37-41. HE Guangping, LI Shiming. Research and design of adjustable stiffness elastic robots joint[J]. Journal of North China University of Technology, 2012, 24(3):37-41. [68] KAWAMURA S, YAMAMOTO T, ISHIDA D, et al. Development of passive elements with variable mechanical impedance for wearable robots[C]//IEEE International Conference on Robotics and Automation, Wasington, D.C:IEEE, 2002:248-253. [69] MIGLIORE S A, BROWN E A, DEWEERTH S P. biologically inspired joint stiffness control[C]//IEEE International Conference on Robotics and Automation, Barcelona, Spain:IEEE, 2005:4508-4513. [70] PALLI G, GIOVANNI B, CLAUDIO M, et al. Design of a variable stiffness actuator based on flexures[J]. Journal of Mechanisms and Robotics-transactions of, 2011, 3(3):34501. [71] PALLI G, MELCHIORRI C, GIOVANNI B, et al. Design and modeling of variable stiffness joints based on compliant flexures[C]//34th Annual Mechanisms and Robotics Conference, Montreal,Quebec, Canada:ASME, 2010:1069-1078. [72] ACCOTO D, CARPINO G, SERGI F, et al. Design and characterization of a novel high-power series elastic actuator for a lower limb orthosis[J]. International Journal of Advanced Robotic Systems, 2013, 10(359):1-12. [73] MATHIJSSEN G, LEFEBER D, VANDERBORGHT B. Variable recruitment of parallel elastic elements:Series-parallel elastic actuators (SPEA) with dephased mutilated gears[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2):594-602. [74] METTIN U, LA HERA P X, FREIDOVICH L B, et al. Parallel elastic actuators as a control tool for preplanned trajectories of underactuated mechanical systems[J]. International Journal of Robotics Research, 2010, 29(9):1186-1198. [75] AU S K, WEBER J, HERR H. Powered ankle-foot prosthesis improves walking metabolic economy[J]. IEEE Transactions on Robotics, 2009, 25(1):51-66. [76] CUI Z, YANG H, QIAN D, et al. Development of a novel variable stiffness actuator with automatic rigidity/compliance switching[C]//IEEE International Conference on Robotics and Biomimetics, Bali, Indonesia:IEEE, 2014:326-331. |
[1] | LONG Yilin, WANG Binluan, JIN Hongzhe, XU Weiming, ZHAO Jie. Variable Stiffness Actuator and Variable Stiffness Flexible Gripper Based on Differential Gear Train [J]. Journal of Mechanical Engineering, 2023, 59(1): 91-102. |
[2] | CAO Shengge, YU Jingjun, PAN Jie, PEI Xu. Design and Moving Capability Analysis of a Flexible Continuum Robot with Rolling Contact [J]. Journal of Mechanical Engineering, 2021, 57(19): 21-29. |
[3] | QU Xiangxu, CAO Dongxing, ZHANG Shan. Design and Research of a Variable Stiffness Compliant Joint Based on Torsional Spring [J]. Journal of Mechanical Engineering, 2021, 57(13): 114-123. |
[4] | ZHANG Chunyi, SONG Lukai, FEI Chengwei, HAO Guangping, LU Cheng. Advanced Extremum Response Surface Method for Dynamic Reliability Analysis on Flexible Mechanism [J]. Journal of Mechanical Engineering, 2017, 53(7): 47-54. |
[5] | LIU Chang, BI Shusheng, ZHAO Hongzhe, ZHOU Xiaodong. Novel Variable Stiffness Actuator Based on Folded Serial Leaf Springs [J]. Journal of Mechanical Engineering, 2017, 53(17): 70-77. |
[6] | TIAN Hao, YU Yueqing. Dynamics and Trajectory Tracking of a Compliant Parallel Robot [J]. Journal of Mechanical Engineering, 2016, 52(13): 38-46. |
[7] | YU Jingjun, HAO Guangbo, CHEN Guimin, BI Shusheng. State-of-art of Compliant Mechanisms and Their Applications [J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68. |
[8] | LU Jianwei;CHEN Hao;SUN Xiaoming;XU Yi. Dynamic Modeling and Analysis of Robot Arm with Consideration of Clearance in Gear Reducer [J]. , 2013, 49(15): 15-21. |
[9] | HUA Weijiang;ZHANG Dingguo. MODELING OF IMPACT DYNAMICS OF FLEXIBLE ROBOTS [J]. , 2007, 43(12): 222-228. |
[10] | Sui Chunping;Zhang Bo;Zhao Mingyang;Liu Hongjun. MODELING AND CONTROL OF A 3-DOF PARALLEL WIRE DRIVEN FLEXIBLE MANIPULATOR [J]. , 2005, 41(6): 60-65. |
[11] | Zhang Chengxin;Yu Yueqing. DYNAMIC MODELING OF ROBOT ARM WITH JOINT AND LINK FLEXIBILITY MANIPULATING A CONSTRAINED OBJECT [J]. , 2003, 39(6): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||