Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (18): 116-127.doi: 10.3901/JME.2024.18.116
Previous Articles Next Articles
GAO Chong1,2, DONG Lihong2, WANG Haidou3, LIU Bin4, Lü Xiaoren1
Received:
2023-12-05
Revised:
2024-05-08
Online:
2024-09-20
Published:
2024-11-15
CLC Number:
GAO Chong, DONG Lihong, WANG Haidou, LIU Bin, Lü Xiaoren. Research Progress on Fatigue Damage of Integrally Stiffened Structure[J]. Journal of Mechanical Engineering, 2024, 60(18): 116-127.
[1] 张洪瑞,詹梅,郑泽邦,等. 航天大型薄壁回转曲面构件成形制造技术的发展与挑战[J]. 机械工程学报,2022,58(20):166-185. ZHANG Hongrui,ZHAN Mei,ZHENG Zebang,et al. Development and challenge of forming manufacturing technologies for aerospace large-scale thin-wall axisymmetric curved-surface components[J]. Journal of Mechanical Engineering,2022,58(20):166-185. [2] PETTIT R G. Crack turning in integrally stiffened aircraft structures[D]. Ann Arbor:Cornell University,2000. [3] FENG G Q,WANG Y T,GARBATOV Y,et al. Experimental and numerical analysis of crack growth in stiffened panels[J]. Ships and Offshore Structures,2021,16(9):980-992. [4] 王少华,赖小明,王博,等. 非焊接壁板密封舱多道次旋压整体制造研究[J]. 载人航天,2021,27(2):215-220. WANG Shaohua,LAI Xiaoming,WANG Bo,et al. Study on integrated manufacturing technology of non-welded spacecraft structure with multi-pass spin-forming[J]. Manned Spaceflight,2021,27(2):215-220. [5] ZHANG M,CAO Z,GUO Y,et al. Stress,damage,and fatigue performance analysis of CFRP/Al double-sided countersunk riveted joints with variable rivet-hole clearance[J]. International Journal of Fatigue,2024,186:108385 [6] 肖晋,胡玉梅,金晓清,等. 基于各向异性GTN模型的铝合金损伤参数确定[J]. 机械强度,2018,40(5):1189-1193. XIAO Jin,HU Yumei,JIN Xiaoqing,et al. Damage parameters identification of aluminum alloy based on anisotropic GTN model[J]. Journal of Mechanical Strength,2018,40(5):1189-1193. [7] KRAUSE M,LYSSAKOW P,SCHRÖDER K U. Improved approach for the panel buckling calculation of stiffened shell structures with torsional stiff stringer[J]. Thin-Walled Structures,2022,171:108829. [8] NESTERCHUK G A. Buckling of a clamped stiffened cylindrical shell[J]. Vestnik St. Petersburg University Mathematics,2021,54(2):145-150. [9] JABAREEN M,SHEINMAN I. Stability of imperfect stiffened conical shells[J]. International Journal of Solids and Structures,2009,46(10):2111-2125. [10] 刘双燕,涂玉倩,苗应刚,等. 筋的截面形状对薄壁结构振动疲劳性能的影响[J]. 航空工程进展,2017(8):190-198. LIU Shuangyan,TU Yuqian,MIAO Yinggang,et al. Effects of stiffeners’ cross section shape on thin walled structures' vibration fatigue property[J]. Advances in Aeronautical Science and Engineering,2017(8):190-198. [11] GAO C,ZHANG H,LI H,et al. Numerical and experimental investigation of vibro-acoustic characteristics of a submerged stiffened cylindrical shell excited by a mechanical force[J]. Ocean Engineering,2022,249:110913. [12] PENG Z,SONG Y,YANG P,et al. Stress intensity factor analysis for mixed-mode fracture behavior of inclined semi-elliptical surface crack in stiffened plate under tension load[J]. Ocean Engineering,2024,291:116405. [13] SONG Y,XU Z,ZHANG J,et al. Experimental study of low-cycle fatigue crack propagation in hull stiffened plates with symmetric and asymmetric cracks[J]. Ocean Engineering,2024,299:117303. [14] 杨翔宁,许希武,郭树祥. 典型加筋板结构面内裂纹偏转与扩展行为分析[J]. 哈尔滨工业大学学报,2017,49(4):42-47. YANG Xiangning,XU Xiwu,GUO Shuxiang. Analysis of crack turning and fracture characteristics of a stiffened panel[J]. Journal of Harbin Institute of Technology,2017,49(4):42-47. [15] ZERBST U,HEINIMANN M,DALLE DONNE C,et al. Fracture and damage mechanics modelling of thin-walled structures-an overview[J]. Engineering Fracture Mechanics,2009,76(1):5-43. [16] SCHEIDER I,BROCKS W. Cohesive elements for thin-walled structures[J]. Computational Materials Science,2006,37(1-2):101-109. [17] 秦剑波. 整体加筋结构裂纹转折理论及其应用研究[D]. 西安:西北工业大学,2006. QIN Jianbo. Studies on the crack turning theories for integrally stiffened structures and it’s application[D]. Xi’an:Northwestern Polytechnical University,2006. [18] ERDOGAN F,SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Fluids Engineering,1963,85(4):519-525. [19] WILLIAMS J G,EWING P D. Fracture under complex stress—the angled crack problem[J]. International Journal of Fracture Mechanics,1972,8(4):441-446. [20] SCHEIDER I,BROCKS W. Cohesive elements for thin-walled structures[J]. Computational Materials Science,2006,37(1-2):101-109. [21] BROCKS W. Plasticity and fracture[M]. Cham:Springer International Publishing,2018. [22] MAHMOUD H N,DEXTER R J. Propagation rate of large cracks in stiffened panels under tension loading[J]. Marine Structures,2005,18(3):265-288. [23] KUCHARSKI D M P,PINTO V T,ROCHA L A O,et al. Geometric analysis by constructal design of stiffened steel plates under bending with transverse I-shaped or t-shaped stiffeners[J]. Facta Universitatis. Series:Mechanical Engineering,2022,20(3):617-632. [24] LLOPART L,KURZ B,WELLHAUSEN C,et al. Investigation of fatigue crack growth and crack turning on integral stiffened structures under mode I loading[J]. Engineering Fracture Mechanics,2006,73(15):2139-2152. [25] 周游. 整体加筋壁板裂纹的应力强度因子研究[J]. 四川理工学院学报,2017,30(2):78-83. ZHOU You. Analysis of the stress intensity factors for integrally stiffened cracked panel[J]. Journal of Sichuan University of Science & Engineering,2017,30(2):78-83. [26] SONG Y,YANG P,HU K,et al. Study of low-cycle fatigue crack growth behavior of central-cracked stiffened plates[J]. Ocean Engineering,2021,241:110083. [27] HUANG X,LIU Y,HUANG X,et al. Crack arrest behavior of central-cracked stiffened plates under uniform tensions[J]. International Journal of Mechanical Sciences,2017,133:704-719. [28] RØNNING L,AALBERG A,LARSEN P K. An experimental study of ultimate compressive strength of transversely stiffened aluminium panels[J]. Thin-Walled Structures,2010,48(6):357-372. [29] BABAZADEH A,KHEDMATI M R. Ultimate strength of cracked ship structural elements and systems:A review[J]. Engineering Failure Analysis,2018,89:242-257. [30] HOSSEINABADI O F,KHEDMATI M R. A review on ultimate strength of aluminium structural elements and systems for marine applications[J]. Ocean Engineering,2021,232:109153. [31] 朱琳. 基于XFEM的加筋板结构疲劳裂纹扩展模拟方法研究[D]. 大连:大连理工大学,2021. ZHU Lin. Research on simulation method of fatigue crack growth of stiffened plate structure based on XFEM[D]. Dalian:Dalian University of Technology,2021. [32] AL LAHAM S,BRANCH S I. Stress intensity factor and limit load handbook[M]. Gloucester:British Energy Generation Limited,1998. [33] KWON S W,SUN C T. Characteristics of three-dimensional stress fields in plates with a through-the-thickness crack[J]. International Journal of Fracture,2000,104(3):289-314. [34] HE W,LIU J,XIE D. Numerical study on fatigue crack growth at a web-stiffener of ship structural details by an objected-oriented approach in conjunction with ABAQUS[J]. Marine Structures,2014,35:45-69. [35] BOŽIĆ Ž,SCHMAUDER S,WOLF H. The effect of residual stresses on fatigue crack propagation in welded stiffened panels[J]. Engineering Failure Analysis,2018,84:346-357. [36] MALEKAN M,KHOSRAVI A,ST-PIERRE L. An ABAQUS plug-in to simulate fatigue crack growth[J]. Engineering with Computers,2021,38:2991-3005. [37] SUKUMAR N,MOËS N,MORAN B,et al. Extended finite element method for three-dimensional crack modelling[J]. International Journal for Numerical Methods in Engineering,2000,48(11):1549-1570. [38] PENG Y,YANG P. Analysis of dynamic stress intensity factors for cracked stiffened plates based on extended FE method[J]. International Journal of Maritime Engineering,2020,162:35-45. [39] WANG T,HAN H,HUANG G,et al. Three-layer phase-field model of finite strain shell for simulating quasi-static and dynamic fracture of elastoplastic materials[J]. Engineering Fracture Mechanics,2022,267:108435. [40] DEVARAJAN B,KAPANIA R K. Analyzing thermal buckling in curvilinearly stiffened composite plates with arbitrary shaped cutouts using isogeometric level set method[J]. Aerospace Science and Technology,2022,121:107350. [41] ZHANG Q,LI S,ZHANG A,et al. A nonlocal nonlinear stiffened shell theory with stiffeners modeled as geometrically-exact beams[J]. Computer Methods in Applied Mechanics and Engineering,2022,397:115150. [42] STARNES,JR J,BRITT V,et al. Nonlinear response and residual strength of damaged stiffened shells subjected to combined loads[C]//37th Structure,Structural Dynamics and Materials Conference. 1996:1555. [43] HUTCHINSON J W. Singular behaviour at the end of a tensile crack in a hardening material[J]. Journal of the Mechanics and Physics of Solids,1968,16(1):13-31. [44] PARKS D M. The virtual crack extension method for nonlinear material behavior[J]. Computer Methods in Applied Mechanics and Engineering,1977,12(3):353-364. [45] MORAN B,SHIH C F. A general treatment of crack tip contour integrals[J]. International Journal of Fracture,1987,35(4):295-310. [46] CHANG D,YANG X,PENG H,et al. A critical elastic strain energy storage-based concept for characterizing crack propagation in elastic-plastic materials[J]. Engineering Fracture Mechanics,2022,264:108335. [47] DENG H,YAN B,OKABE T. A new path-independent interaction integral for dynamic stress intensity factors of cracked structures[J]. International Journal of Solids and Structures,2022,243:111559. [48] DENG H,YAN B,OKABE T. Fatigue crack propagation simulation method using XFEM with variable-node element[J]. Engineering Fracture Mechanics,2022,269:108533. [49] HUANG X,LIU Y,DAI Y. Characteristics and effects of t-stresses in central-cracked unstiffened and stiffened plates under mode I loading[J]. Engineering Fracture Mechanics,2018,188:393-415. [50] 夏世林,磨季云. 基于J积分的含裂纹加筋板在单轴拉伸载荷下的极限强度计算[J]. 舰船科学技术,2021,43(7):34-39,59. XIA Shilin,MO Jiyun. Ultimate strength calculation of cracked stiffened-panel under loading of uniaxial tension using j-integral theory[J]. Ship Science and Technology,2021,43(7):34-39,59. [51] WELLS A A. The application of fracture mechanics to yielding materials[J]. Proceedings of The Royal Society of London. Series a. Mathematical and Physical Sciences,1965,285(1400):34-45. [52] SEDMAK A,GRBOVIC A,PETROVSKI B,et al. The effects of welded clips on fatigue crack growth in AA6156 T6 panels[J]. International Journal of Fatigue,2022,165:107162. [53] SHAIKH R K,KHAN T,AHMED S A. Fracture analysis of thin aluminum sheet by j integer and CTOD technique using FEA validated by experimental[J]. Procedia Engineering,2017,173:1191-1197. [54] GONZÁLES G L G,GONZÁLEZ J A O,PAIVA V E L,et al. Crack-tip plastic zone size and shape via DIC[C]//Fracture,Fatigue,Failure and Damage Evolution,Volume 6. Cham:Springer,2019:5-10. [55] SONG H,LIU C,ZHANG H,et al. Experimental investigation on damage evolution in pre-corroded aluminum alloy 7075-t7651 under fatigue loading[J]. Materials Science and Engineering:A,2021,799:140206. [56] CHEN J,HUANG Y,DONG L,et al. A new method for cyclic crack-tip plastic zone size determination under cyclic tensile load[J]. Engineering Fracture Mechanics,2014,126:141-154. [57] JIANG W,YANG P,LUO B,et al. Responses of cracked stiffened plates to low-cycle fatigue loads[J]. Ocean Engineering,2021,241:109986. [58] 余寿文,冯西桥. 损伤力学[M]. 北京:清华大学出版社,1997. YU Shouwen,FENG Xiqiao. Damage mechanics[M]. Beijing:Tsinghua University Press,1997. [59] JAVILI A,MORASATA R,OTERKUS E,et al. Peridynamics review[J]. Mathematics and Mechanics of Solids,2019,24(11):3714-3739. [60] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids,1960,8(2):100-104. [61] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances In Applied Mechanics,1962,7:55-129. [62] NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics,1987,54(3):525-531. [63] BROCKS W. Plasticity and Fracture[M]. Switzerland:Springer,2018. [64] MÉÏTÉ M,KAPTCHOUANG N B N,MONERIE Y,et al. Handbook of Damage Mechanics[M]. New York:Springer,2022. [65] BROCKS W,SCHEIDER I. Prediction of crack path bifurcation under quasi-static loading by the cohesive model[J]. Structural Durability & Health Monitoring,2007,3(2):69. [66] TVERGAARD V,NEEDLEMAN A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica,1984,32(1):157-169. [67] GURSON A L. Continuum theory of ductile rupture by void nucleation and growth:part I—yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology,1977,99(1):297-300. [68] SCHIAVONE A,ABEYGUNAWARDANA- ARACHCHIGE G,SILBERSCHMIDT V V. Crack initiation and propagation in ductile specimens with notches:experimental and numerical study[J]. Acta Mechanica,2016,227(1):203-215. [69] HE Z,ZHU H,HU Y. An improved shear modified GTN model for ductile fracture of aluminium alloys under different stress states and its parameters identification[J]. International Journal of Mechanical Sciences,2021,192:106081. [70] REN B,LI S. Modeling and simulation of large-scale ductile fracture in plates and shells[J]. International Journal of Solids and Structures,2012,49(18):2373-2393. [71] HU Y,REN B,NI K,et al. Meshfree simulations of large scale ductile fracture of stiffened ship hull plates during ship stranding[J]. Meccanica,2020,55(4):833-860. [72] WANG Z,HU Z,LIU K,et al. Application of a material model based on the Johnson-Cook and Gurson- Tvergaard-Needleman model in ship collision and grounding simulations[J]. Ocean Engineering,2020,205:106768. [73] 陈同祥,张琳,赵长喜,等. 天宫一号整体壁板式密封舱结构技术[J]. 中国科学:技术科学,2014,44(2):150-161. CHEN Tongxiang,ZHANG Lin,ZHAO Changxi,et al. The technique of integrally stiffened structure for tiangong-1 pressurized module[J]. Science China:Tech Science,2014,44(2):150-161. |
[1] | WANG Boshi, CHEN Nannan, CAI Yan, WANG Min. Low-temperature Fatigue Ductile-to-brittle Transition Behavior and Mechanism for Simulated Coarse-grained Heat-affected Zone of a High-strength Low-alloy Bainite Steel [J]. Journal of Mechanical Engineering, 2024, 60(6): 271-278. |
[2] | ZHAO Chenchen, LIU Jianglin, LI Zixuan, WANG Tao. Prediction of Damage and Cracking of Magnesium Alloy Upsetting and Forming Based on Improved GTN Damage Model [J]. Journal of Mechanical Engineering, 2023, 59(4): 43-52. |
[3] | HAN Xiao, SUN Liangliang, LIU Bo, LIU Zheyuan, WU Chengwei. Effect of Adhesive Thickness on the Mechanical Property of Adhesively Bonded Corrugated Structure under Three-point Bending Load [J]. Journal of Mechanical Engineering, 2023, 59(2): 104-112. |
[4] | LI Hefei, ZHANG Peng, ZHANG Zhefeng. Research Progress on Evaluation Methods of Fracture Toughness and Fatigue Crack Growth in High-strength Steel [J]. Journal of Mechanical Engineering, 2023, 59(16): 18-31. |
[5] | WANG Chao, YANG Bing, ZHU Tao, XIAO Shoune, YANG Guangwu, FAN Xiaoda. Research on Crack Propagation and Remaining Life Prediction Method of Surface Strengthened Axle [J]. Journal of Mechanical Engineering, 2023, 59(14): 43-53. |
[6] | MA Shuo, JIANG Xingyu, YANG Guozhe, LIU Weijun, QIAO Heting, WANG Zisheng. Prediction and Evaluation Model for the Residual Life of Wasted Machine Tool Spindle [J]. Journal of Mechanical Engineering, 2021, 57(4): 219-226. |
[7] | YU Peishi, ZHAO Junhua, GUO Wanlin. Three-dimensional Damage Tolerance Design: Out-of-plane Constraint Theory and Fatigue/Fracture Criteria [J]. Journal of Mechanical Engineering, 2021, 57(16): 87-105. |
[8] | WANG Kangkang, WANG Xiaowei, WEN Jianfeng, ZHANG Xiancheng, GONG Jianming, TU Shantung. Creep Rupture: From Physical Failure Mechanisms to Lifetime Prediction of Structures [J]. Journal of Mechanical Engineering, 2021, 57(16): 132-152. |
[9] | WU Shengchuan, XIE Cheng, HU Yanan, WU Zhengkai, KANG Guozheng. Defect Tolerance Assessment Method of Fusion Welded Medium and High Strength Al Alloy Joints [J]. Journal of Mechanical Engineering, 2020, 56(8): 46-59. |
[10] | SHEN Xuecheng, HUANG Yuhui, ZHU Mingliang, XUAN Fuzhen. Comparison and Verification of Unified Fatigue Threshold Models [J]. Journal of Mechanical Engineering, 2020, 56(24): 81-87. |
[11] | LIANG Bin, ZHAO Yan, ZHAO Qingjiang, FAN Tiqiang, LI Yang. On the Prediction of Failure in 6016 Aluminum Alloy Sheet by Gissmo Damage Model [J]. Journal of Mechanical Engineering, 2019, 55(18): 53-62. |
[12] | HAN Xiao, JIN Yong, YANG Peng, LI Xiaoyang, HOU Wenbin. Experimental and Simulation Study on the Effect of Adhesive Thickness on Mode I Fracture Toughness [J]. Journal of Mechanical Engineering, 2018, 54(10): 43-52. |
[13] | SHANGGUAN Wenbin, , WANG Xiaoli, DUAN Xiaocheng, LIU Guobing, YAN Jiao. Fatigue Crack Growth Experiment and Modeling for Rubbers Used in Isolators under Variable Amplitude Loads [J]. Journal of Mechanical Engineering, 2015, 51(8): 50-58. |
[14] | DU Yannan, ZHU Mingliang, XUAN Fuzhen. Effect of Stress Ratio on the Transition Point of Fatigue Crack Growth Curve in the Near-threshold Regime of a 25Cr2Ni2MoV Steel Welded Joint [J]. Journal of Mechanical Engineering, 2015, 51(8): 44-49. |
[15] | HUANG Xiuxiu, HU Xiaoping, YU Baohua, WU Shengyou. Research on Ultrasonic Cutting Mechanism of Nomex Honeycomb Composites Based on Fracture Mechanics [J]. Journal of Mechanical Engineering, 2015, 51(23): 205-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||