[1] BEHRENS B A, BOUGUECHA A, BUSE C. Potentials of in situ monitoring of aluminum alloy forging by acoustic emission[J]. Archives of Civil and Mechanical Engineering, 2016, 16(4):724-733. [2] BEHRENS B A, SANTANGELO A, BUSE C. Acoustic emission technique for online monitoring during cold forging of steel components:a promising approach for online crack detection in metal forming processes[J]. Production Engineering, 2013, 7(4):423-432. [3] LONG X J, LI Q F, HE C H. Acoustic emission monitoring and evaluation for rolled steel damage under different tensile rates[J]. Journal of Vibration and Shock, 2017, 36(7):219-225. [4] 周友行, 张俏, 田茂, 等.批量钻削监测信号双谱特征融合研究及应用[J].机械工程学报, 2014, 50(24):24-30. ZHOU Youhang, ZHANG Qiao, TIAN Mao, et al. Research and application of bi-spectrum features fusion based on batch drilling monitoring signals[J]. Journal of Mechanical Engineering, 2014, 50(24):24-30. [5] BRAVO A, TOUBAL L, KOFFI D. Development of novel green and biocomposite materials:Tensile and flexural properties and damage analysis using acoustic emission[J]. Materials and Design, 2014, 66(66):16-28. [6] 张颖, 吴昊, 高晗, 等. 20#钢不同晶粒度试件拉伸损伤试验的声发射特性研究[J].应用声学, 2017, 36(3):228-233. ZHANG Ying, WU Hao, GAO Han, et al. The acoustic emission characteristics of 20#steel with different grain size specimens tensile damage tests[J]. Applied Acoustics, 2017, 36(3):228-233. [7] 丁利伟, 沈玉娣.复合材料拉伸过程的声发射特性研究[J].无损检测, 2009, 31(10):781-785. DING Liwei, SHEN Yudi. Research on Acoustic emission characteristics of the composite material during tensile test[J]. Nondestructive Testing, 2009, 31(10):781-785. [8] 李雪换, 底月兰, 王海斗, 等.基于声发射技术的热障涂层拉伸失效模式研究[J].机械工程学报, 2020, 56(14):57-64. LI Xuehuan, DI Yuelan, WANG Haidou, et al. Research on crack failure modes of thermal barrier coatings based on acoustic emission technique[J]. Journal of Mechanical Engineering, 2020, 56(14):57-64. [9] CEVAT T S, MEHDI A N, MANOUCHEHR S. Investigation of surface damages during sheet metal forming using acoustic emission[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2013, 227(3):286-296. [10] SHANBHAG V V, ROLFE B F, ARUNACHALAM N. Investigating galling wear behaviour in sheet metal stamping using acoustic emissions[J]. Wear, 2018, 414(11):31-42. [11] TAHA Z, WIDIYATI K. Artificial neural network for bearing defect detection based on acoustic emission[J]. International Journal of Advanced Manufacturing Technology, 2010, 50(1-4):289-296. [12] GODIN N, HUGUET S, GAERTNER R. Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers[J]. NDT & E International, 2004, 37(4):253-260. [13] ZHANG Z, XU Y, YANG J. A survey of sparse representation:Algorithms and applications[J]. IEEE Access, 2017, 3:490-530. [14] 王华庆, 任帮月, 宋浏阳, 等.基于终止准则改进K-SVD字典学习的稀疏表示特征增强方法[J].机械工程学报, 2019, 55(7):35-43. WANG Huaqing, REN Bangyue, SONG Liuyang, et al. Sparse representation method based on termination criteria improved K-SVD dictionary learning for feature enhancement[J]. Journal of Mechanical Engineering, 2019, 55(7):35-43. [15] QIAO Lishan, CHEN Songcan, TAN Xiaoyang. Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition, 2010, 4(2):331-341. [16] YE Mengjun, HU Changhui, WAN Liguang, et al. Fast single sample face recognition based on sparse representation classification[J]. Multimedia Tools and Applications, 2020, 80(3):1-23. [17] 王银玲, 李华聪.遗传算法优化的碳纤维复合材料声发射数据聚类分析[J].无损检测, 2019, 41(6):1-5, 37. WANG Yinling, LI Huacong. Clustering Analysis of acoustic emission data of carbon fiber composites optimized by genetic algorithm[J]. Nondestructive Testing, 2019, 41(6):1-5, 37. [18] TONG X, ZHANG J, YAO L. Cluster analysis of acoustic emission signals of 2D-C/SiC under tensile loading[J]. Chinese Journal of Solid Mechanics, 2014, 35(2):109-114. [19] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322. [20] ZHUANG H, YANG M, CUI Z. A method for static hand gesture recognition based on non-negative matrix factorization and compressive sensing[J]. IAENG International Journal of Computer Science, 2017, 44(1):52-59. |