[1] 丁文锋,苗情,李本凯,等. 面向航空发动机的镍基合金磨削技术研究进展[J]. 机械工程学报,2019,55(1):189-215. DING Wenfeng,MIAO Qing,LI Benkai,et al. Review on grinding technology of nickel-based superalloys used for aero-engine[J]. Journal of Mechanical Engineering,2019,55(1):189-215. [2] CARSTEN J R,SØREN F,SOMRITA D,et al. Surface crack formation on rails at grinding induced martensite white etching layers[J]. Wear,2017,384:8-14. [3] ZHANG S B,LIU Z Q,WANG B,et al. Phase transition and dynamic recrystallization mechanisms of white layer formation during turning superalloy Inconel 718[J]. Journal of Materials Research and Technology,2021,15:5288-5296. [4] 杜劲,刘战强,张入仁,等. 镍基高温合金高速铣削加工表面完整性[J]. 中南大学学报,2012,43(7):2593-2600. DU Jin,LIU Zhanqiang,ZHANG Ruren,et al. Surface integrity on high-speed milling Ni-based superalloy[J]. Journal of Central South University,2012,43(7):2593-2600. [5] CHEN Z. Study on the white layer in wire electrical discharge trim cutting of bearing steel GCr15[J]. International Journal of Advanced Manufacturing Technology,2019,102:2375-2386. [6] SATYANARAYANAN R,SHREYES N M,JUNG I H. Modeling of laser-tempering process for hyper-eutectoid steels[J]. Metallurgical and Materials Transactions A,2014,45:2612-2625. [7] 谢兴杰,张小俭. 激光加热辅助车削淬硬钢的白层形成临界切削速度预测与实验研究[J]. 中国机械工程,2022,33(1):15-23. XIE Xingjie,ZHANG Xiaojian. Prediction and experimental study of critical cutting speed of white layers formation in LAT hardened steels[J],China Mechanical Engineering,2022,33(1):15-23. [8] 潘睿,任瑞铭,陈春焕,等. 钢轨踏面马氏体白层组织分析[J]. 材料热处理学报,2016,37(7):167-171. PAN Rui,REN Ruiming,CHEN Chunhuan,et al. Microstructure analysis of martensite white etching layers on rails[J]. Transactions of Materials and Heat Treatment,2016,37(7):167-171. [9] 辛悦,赵秀娟,潘金芝,等. D2车轮钢原始组织对滑动磨损性能的影响[J]. 摩擦学学报,2019,39(4):479-488. XIN Yue,ZHAO Xiujuan,PAN Jinzhi,et al. Influences of microstructure on sliding wear performance of D2 wheel steel[J]. Tribology,2019,39(4):479-488. [10] 张涛,陈浩,田峰,等. 大规模1.5MW风力发电机变桨轴承开裂行为分析[J]. 中国电机工程学报,2019,39(21):6344-6351. ZHANG Tao,CHEN Hao,TIAN Feng,et al. Analysis on large scale cracking damage for pitch bearings of 1.5MW wind power generators[J]. Proceedings of the CSEE,2019,39(21):6344-6351. [11] GUO Y B,SAHNI J. A comparative study of hard turned and cylindrically ground white layers[J]. International Journal of Machine Tools & Manufacture,2004,44:135-145. [12] 耿荣生,景鹏. 蓬勃发展的我国无损检测技术[J]. 机械工程学报,2013,49(22):1-7. GENG Rongsheng,JING Peng. On the flourishing development of NDT techniques in China[J],Journal of Mechanical Engineering,2013,49(22):1-7. [13] ABUNABAH B A,NAGY P B. High-frequency eddy current conductivity spectroscopy for residual stress profiling in surface-treated nickel-base superalloys[J]. NDT&E International,2007,40:405-418. [14] 蒋生辉,丁昊昊,张翔,等. 基于磁巴克豪森噪声的钢轨白层无损检测研究[J]. 机械工程学报,2021,57(18):49-56. JIANG Shenghui,DING Haohao,ZHANG Xiang,et al. Research on non-destructive testing of rail white etching layer based on magnetic Barkhausen noise[J]. Journal of Mechanical Engineering,2021,57(18):49-56. [15] GUO Y B,AMMULA S C. Real-time acoustic emission monitoring for surface damage in hard machining[J]. International Journal of Machine Tools and Manufacture,2005,45(14):1622-1627. [16] 姜晨,李郝林. 基于声发射信号的精密外圆切入磨削时间评估算法及试验研究[J]. 机械工程学报,2014,50(5):194-200. JIANG Chen,LI Haolin. Algorithm and experiment of estimation of time of precision cylindrical plunge grinding based on acoustic emission signal[J]. Journal of Mechanical Engineering,2014,50(5):194-200. [17] ARUNA A,RAMESHKUMAR K,UNNIKRISHNAN D,et al. Tool condition monitoring of cylindrical grinding process using acoustic emission sensor[J]. Materials Today:Proceedings,2018,5:11888-11899. [18] BADGER J,MURPHY S,DONNELL G E. Acoustic emission in dressing of grinding wheels:AE intensity,dressing energy,and quantification of dressing sharpness and increase in diamond wear-flat size[J]. International Journal of Machine Tools and Manufacture,2018,125:11-19. [19] FENG P,BORGHESANI P,SMITH W A,et al. Model-based surface roughness estimation using acoustic emission signals[J]. Tribology International,2020,144:106101. [20] GAO Zheyu,LIN Jing,WANG Xinfeng,et al. Grinding burn detection based on cross wavelet and wavelet coherence analysis by acoustic emission signal[J]. Chinese Journal of Mechanical Engineering,2019,32(1):68. [21] 李会鹏,熊毅,路妍,等. 应变速率对低温拉伸316LN奥氏体不锈钢微观组织和力学性能的影响[J]. 材料研究学报,2018,32(2):105-111. LI Huipeng,XIONG Yi,LU Yan,et al. Effect of strain rate on microstructure evolution and mechanical property of 316LN austenitic stainless steel at cryogenic temperature[J]. Journal of Materials Research,2018,32(2):105-111. [22] RAMESH A. Prediction of process-induced microsturctural changes and residual stresses in orthogonal hard machining[D]. Atlanta:Georgia Institute of Technology,2002. [23] 刘宗昌.材料组织结构转变原理[M]. 北京:冶金工业出版社,2009. LIU Zongchang.Transformation principle of material organization structure[M]. Beijing:Metallurgical Industry Press,2009. [24] WANG L H,ROBERT X G. Condition monitoring and control for intelligent manufacturing[M]. London:Springer,2006. [25] YANG Z S,YU Z H,WU H X,et al. Laser-induced thermal damage detection in metallic materials via acoustic emission and ensemble empirical mode decomposition[J]. Journal of Materials Processing Technology,2014,214:1617-1626. [26] BOHEMEN S,SIETSMA J,HERMANS M,et al. Kinetics of the martensitic transformation in low-alloy steel studied by means of acoustic emission[J]. Acta Materialia,2003,51:4183-4196. [27] BHUIYAN M,CHOUDHURY I,DAHARI M,et al. Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring[J]. Measurement,2016,92:208-217. [28] BARAM J,ROSEN M. On the nature of the thermoelastic martensitic phase transformation in Au-47.5 at.% Cd determined by acoustic emission[J]. Acta Metallurgica,1982,30:655-662. [29] LIU Q,CHEN X,GINDY N. Investigation of acoustic emission signals under a simulative environment of grinding burn[J]. International Journal of Machine Tools & Manufacture,2006,46:284-292. |