[1] 徐坤和,张文学,阳代军,等. 9 m级超大直径2219铝 合金整体环件的研制[J]. 锻压技术, 2016, 41(10):92-97. XU Kunhe, ZHANG Wenxue, YANG Daijun, et al. Manufacture of aluminum alloy 2219 integral ring with 9 m ultra-large diameter[J]. Forging & Stamping Technology, 2016, 41(10):92-97. [2] 安剑,李永丰,张云光,等. 热冲压条件下2219铝合金的本构行为测试与建模[J]. 机械工程学报, 2021, 57(4):1-9. AN Jian, LI Yongfeng, ZHANG Yunguang, et al. Constitutive behavior of 2219 aluminum alloy under hot stamping condition[J]. Journal of Mechanical Engineering, 2021, 57(4):1-9. [3] NARAYANA S, ADITYA S, RAMESH P, et al. Microstructure and micro-texture evolution during large strain deformation of aluminium alloy AA 2219[J]. Materials Science and Engineering A, 2016, 677:41-49. [4] 邹阳帆,王非凡,李文亚,等. 不等厚2219铝合金板回填式搅拌摩擦点焊接头组织及性能研究[J]. 机械工程学报, 2020, 56(6):176-183. ZOU Yangfan, WANG Feifan, LI Wenya, et al. Study on microstructure and properties of refill friction stir spot welding joints of 2219 aluminum alloy with different thickness[J]. Journal of Mechanical Engineering, 2020, 56(6):176-183. [5] MAO Xianchang, YI Youping, HE Hailin, et al. Second phase particles and mechanical properties of 2219 aluminum alloys processed by an improved ring manufacturing process[J]. Materials Science & Engineering A, 2020, 781:139226. [6] YODA R, SHIBATA K, MORIMITSU T, et al. Formability of ultrafine-grained interstitial-free steel fabricated by accumulative roll-bonding and subsequent annealing[J]. Scripta Materialia, 2011, 65:175-178. [7] TIAN Yuan, HUANG Hua, YUAN Guangyin, et al. Microstructure evolution and mechanical properties of quasicrystal-reinforced Mg-Zn-Gd alloy processed by cyclic extrusion and compression[J]. Journal of Alloys and Compounds, 2015, 626:42-48. [8] MAZILKIN A, STRAUMAL B, BORODACHENKOVA M, et al. Gradual softening of Al-Zn alloys during high-pressure torsion[J]. Materials Letters, 2012, 84:63-65. [9] ZHA Min, LI Yanjun, MATHIESEN R, et al. Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing[J]. Acta Materialia, 2015, 84:42-54. [10] MIURA H, MARUOKA T, YANG X, et al. Microstructure and mechanical properties of multi-directionally forged Mg-Al-Zn alloy[J]. Scripta Materialia, 2012, 66:49-51. [11] SAKAI T, MIURA H, GOLOBORADKO A, et al. Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475[J]. Acta Materialia, 2009, 57:153-162. [12] 张伟华,朱庆丰,余杰,等. 终锻温度对多向锻造高纯铜组织及硬度的影响[J]. 中国有色金属学报, 2020, 30(6):1307-1316. ZHANG Weihua, ZHU Qingfeng, YU Jie, et al. Effect of final forging temperature on microstructure and hardness of multi-directional forged high purity copper[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6):1307-1316. [13] DONG Beibei, CHE Xin, ZHANG Zhimin, et al. Microstructure evolution and microhardness of Mg-13Gd-4Ye2Zn-0.5Zr alloy via pre-solution and multi-directional forging (MDF) process[J]. Journal of Alloys and Compounds, 2021, 853:157066. [14] 纪小虎,李萍,时迎宾,等. TA15钛合金等温多向锻造晶粒细化机理与力学性能[J]. 中国有色金属学报, 2019, 29(11):2515-2523. JI Xiaohu, LI Ping, SHI Yingbin, et al. Grain refinement mechanism and mechanical properties of TA15 alloy during multi-directional isothermal forging[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(11):2515-2523. [15] YASIN A, SADUN K, ANASTASIA V, et al. Effect of multi-directional hot forging process on the microstructure and mechanical properties of Al-Si based alloy containing high amount of Zn and Cu[J]. Materials Science & Engineering A, 2021, 803:140709. [16] CHEN Cai, SONG Linghui, DU Xinghao, et al. Enhanced mechanical property of AZ31B magnesium alloy processed by multi-directional forging method[J]. Materials Characterization, 2017, 131:72-77. [17] SUN Jiachen, WANG Xiaozhen, LI Jiansheng, et al. Enhanced mechanical properties of ultrafine-lamella 304L stainless steel processed by multidirectional hot forging[J]. Vacuum, 2021, 187:110116. [18] SASAN N, MOHSEN K, ASHKAN S. Flow stress of 2024 aluminum alloy during multi-directional forging process and natural aging after plastic deformation[J]. Materials Chemistry and Physics, 2020, 254:123446. [19] ZHANG Z, QU S, FENG A, et al. Achieving grain refinement and enhanced mechanical properties in Ti-6Al-4V alloy produced by multidirectional isothermal forging[J]. Materials Science & Engineering A, 2017, 692:127-138. [20] HE Hailin, YI Youping, HUANG Shiquan, et al. Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al-Cu alloy[J]. Materials Science and Engineering A, 2018, 712:414-423. [21] MUDDLE B. The precipitate Ω phase in Al-Cu-Mg-Ag alloys[J]. Acta Metallurgica, 1989, 37(3):777-789. [22] LIU Zhiyi, CHEN Xu, HAN Xiangnan, et al. The dissolution behavior of θ' phase in Al-Cu binary alloy during equal channel angular pressing and multi-axial compression[J]. Materials Science and Engineering A, 2010, 527:4300-4305. [23] MAHARANA H, MONDAL K. Manifestation of Hall-Petch breakdown in nanocrystalline electrodeposited Ni-MoS2 coating and its structure dependent wear resistance behavior[J]. Surface and Coatings Technology, 2021, 410:126950. [24] WANG Xinwei, WANG Chunju, LIU Yang, et al. An energy based modeling for the acoustic softening effect on the Hall-Petch behavior of pure titanium in ultrasonic vibration assisted micro-tension[J]. International Journal of Plasticity, 2021, 136:102879. [25] NIELS H. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004, 51:801-806. [26] ZHU A, STARKE E. Strengthening effect of unshearable particles of finite size:A computer experimental study[J]. Acta Materialia, 1999, 47(11):3263-3269. |