Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (21): 341-355.doi: 10.3901/JME.2023.21.341
Previous Articles Next Articles
WANG Bo1, WANG Dagang1, CHONG Hailang1, SHEN Xiaoman1, ZHANG Dekun2
Received:
2023-02-21
Revised:
2023-07-16
Online:
2023-11-05
Published:
2024-01-15
CLC Number:
WANG Bo, WANG Dagang, CHONG Hailang, SHEN Xiaoman, ZHANG Dekun. Tribo-corrosion-fatigue Behaviors of Suspension Bridge Cable Wires in Contact with the Saddle Material[J]. Journal of Mechanical Engineering, 2023, 59(21): 341-355.
[1] 王大刚,朱辉龙,高文丽,等. 悬索桥主缆平行钢丝动态接触与滑移机理研究[J]. 机械工程学报, 2021, 57(11):228-242. WANG Dagang, ZHU Huilong, GAO Wenli, et al. Research on dynamic contact and slip mechanisms of parallel steel wires in the main cable of suspension bridge[J]. Journal of Mechanical Engineering, 2021, 57(11):228-242. [2] WANG D G, YE J, WANG B, et al. Review on the service safety assessment of main cable of long span multi-tower suspension bridge[J]. Applied Sciences-Basel, 2021, 11(13). [3] TIAN H, WANG J, CAO S, et al. Probabilistic assessment of the safety of main cables for long-span suspension bridges considering corrosion effects[J]. Advances in Civil Engineering, 2021, 2021:6627762. [4] WANG D, WANG B, GAO W, et al. Dynamic contact behaviors of saddle materials for suspension bridge[J]. Engineering Failure Analysis, 2022, 134:106031. [5] KARANCI E, BETTI R. Modeling corrosion in suspension bridge main cables. II:Long-term corrosion and remaining strength[J]. Journal of Bridge Engineering, 2018, 23(6):00001234. [6] PÉRIERA V, DIENGA L, GAILLET L, et al. Fretting-fatigue behavior of bridge engineering cables in a solution of sodium chloride[J]. Wear, 2009, 267:308-314. [7] CHENG Z Y, ZHANG Q H, BAO Y, et al. Analytical models of frictional resistance between cable and saddle equipped with friction plates for multispan suspension bridges[J]. Journal of Bridge Engineering, 2018, 23(1):1-13. [8] 姜晓霞. 金属的腐蚀磨损[M]. 北京:化学工业出版社, 2003. JIANG Xiaoxia. Corrosion and wear of metal[M]. Beijing:Chemical Industry Press, 2003. [9] JIANG J, STACK M M, NEVILLE A. Modelling the tribo-corrosion interaction in aqueous sliding conditions[J]. Tribology International, 2002, 35(10):669-679. [10] GUAN J, JIANG X, XIANG Q, et al. Corrosion and tribocorrosion behavior of titanium surfaces designed by electromagnetic induction nitriding for biomedical applications[J]. Surface Coatings Technology, 2021, 409:126844. [11] 王荣. 金属材料的腐蚀疲劳[M]. 西安:西北工业大学出版社, 2001. WANG Rong. Corrosion fatigue of metallic materials[M]. Xi'an:Northwestern Polytechnical University Press, 2001. [12] 余夏明. 桥梁平行钢丝腐蚀疲劳试验与吊索寿命评估研究[D]. 南京:东南大学, 2019. YU Xiaming. Corrosion fatigue test on bridge parallel steel wires and fatigue life assessment of suspenders[D]. Nanjing:Southeast University, 2019. [13] 徐俊,陈惟珍,刘学.斜拉索退化机理及钢丝力学模型[J]. 同济大学学报, 2008, 36(7):911-915. XU Jun, CHEN Weizhen, LIU Xue. Deterioration mechanism of cables and mechanics model of wires[J]. Journal of Tongji University, 2008, 36(7):911-915. [14] ZHANG D K, GENG H, ZHANG Z F, et al. Investigation on the fretting fatigue behaviors of steelwires under different strain ratios[J]. Wear, 2013, 303(1-2):334-342. [15] ZHANG D K, GE S R, QIANG Y H. Research on the fatigue and fracture behavior due to the fretting wear of steel wire in hoisting rope[J]. Wear, 2003, 255(7-12):1233-1237. [16]ZHANG J, WANG D G, SONG D Z, et al. Tribo-fatigue behaviors of steel wire rope under bending fatigue with the variable tension[J]. Wear, 2019, 428-429:154-161. [17] 王大刚,张俊,朱辉龙,等. 定,变载弯曲疲劳钢丝绳失效机理对比研究[J]. 摩擦学学报, 2020, 40(6):762-773. WANG Dagang, ZHANG Jun, ZHU Huilong, et al. Comparative research on failure mechanisms of steel wire ropes during bending fatigue under constant and variable loads[J]. Tribology, 2020, 40(6):762-773. [18] WANG D, SONG D, WANG X, et al. Tribo-fatigue behaviors of steel wires under coupled tension-torsion in different environmental media[J]. Wear, 2019, 420:38-53. [19] 赵维建,张德坤,张泽锋,等.碱性腐蚀环境下接触载荷对钢丝微动疲劳行为的影响[J]. 摩擦学学报, 2012, 32(3):306-312. ZHAO Weijian, ZHANG Dekun, ZHANG Zefeng, et al. Effect of contact load on the fretting fatigue of steel wire under alkaline corrosive environment[J]. Tribology, 2012, 32(3):306-312. [20] PERIER V, DIENG L, GAILLET L, et al. Influence of an aqueous environment on the fretting behaviour of steel wires used in civil engineering cables[J]. Wear, 2011, 271(9-10):1585-1593. [21] CHANG X D, HUANG H B, PENG Y X, et al. Friction, wear and residual strength properties of steel wire rope with different corrosion types[J]. Wear, 2020, 458:203425. [22] NAKAMURA S, SUZUMURA K. Experimental study on fatigue strength of corroded bridge wires[J]. Journal of Bridge Engineering, 2012, 18(3):200-209. [23] NAKAMURA S, SUZUMURA K. Hydrogen embrittlement and corrosion fatigue of corroded bridge wires[J]. Journal of Constructional Steel Research, 2009, 65(2):269-277. [24] 宋神友,薛花娟,陈焕勇,等. 伶仃洋大桥锌-铝-稀土合金镀层钢丝腐蚀-疲劳耦合试验研究[J]. 桥梁建设, 2022, 52(2):24-30. SONG Shenyou, XUE Huajuan, CHEN Huanyong, et al. Experimental research on corrosion-fatigue coupling of Zn-Al-rare earth alloy coated steel wires of Lingdingyang bridge[J]. Bridge Construction, 2022, 52(2):24-30. [25] JAMES G. Test method for corrosion fatigue testing of cold rolled steel wire in sour- and sweet environment based on deflection controlled four point bending[J]. Journal of Physical Chemistry C, 2009, 112(32):12264-12271. [26] 齐盛珂. 斜拉索用高强钢丝腐蚀断面特征及力学性能退化实验研究[D]. 深圳:深圳大学, 2019. QI Shengke. Experimental study on corrosion characteristics and mechanical properties degradation of high-strength steel wire for stay cable[D]. Shenzhen:Shenzhen University, 2019. [27] 孙华怀,陈惟珍,杨建喜. 锈蚀断丝对拉索力学性能影响的数值研究[J]. 华南理工大学学报, 2018, 46(7):137-144. SUN Huahuai, CHEN Weizhen, YANG Jianxi. A numerical study of the effect of corrosion and breakage of wires on mechanical properties of cable[J]. Journal of South China University of Technology, 2018, 46(7):137-144. [28] KACHANOV L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999, 97(1-4):11-18. [29] 李威. 考虑强度退化的非线性累积损伤模型分析[J]. 机械强度, 2020, 42(3):723-727. LI Wei. Analysis of nonlinear cumulative damage model considering strength degradation[J]. Journal of Mechanical Strength, 2020, 42(3):723-727. |
[1] | LÜ Bugao, MENG Xianghui, TANG Yihu, CHEN Kang, YIN Jiabao, XIE Youbai. Mixed Thermal Elastohydrodynamic Lubrication Analysis for the Coupled Cam-roller-pin Contact in Heavy-duty Marine Engines [J]. Journal of Mechanical Engineering, 2024, 60(19): 116-131. |
[2] | LI Mengxuan, DING Haohao, AN Boyang, WANG Wenjian, LIN Qiang, CHEN Rong, LIU Qiyue. Corrosion and Wear Behavior of U71Mn Rail in Industrial and Marine Atmosphere [J]. Journal of Mechanical Engineering, 2024, 60(19): 132-143. |
[3] | WANG Dagang, XU Wei, LI Chenchen, SUN Yuewei. Study on the Influence of Working Condition Parameters on the Dynamic Contact and Microslip Behavior between Main Cable Strand and Saddle of Suspension Bridge [J]. Journal of Mechanical Engineering, 2024, 60(19): 144-158. |
[4] | ZENG Xin, LAI Jianping, WANG Chi, YUAN Xiaohu, LI Dingjun, YU Jiaxin. Investigation on Nano-tribological Properties of Amorphous Alloys Based on High-throughput Co-sputtering Method [J]. Journal of Mechanical Engineering, 2024, 60(15): 185-193. |
[5] | ZHU Pengjuan, LIU Xiaoling, ZHOU Yalin, HE Wenzhuo, GUO Feng. Analysis of Thermal Mixed Lubrication Performance in Hybrid Ceramic Ball Bearings [J]. Journal of Mechanical Engineering, 2024, 60(15): 205-215. |
[6] | GUO Meiling, YANG Lei, LI Pengyang, XU Zhentao, XU Chaoyuan, WANG Quandai, LI Yan. Tribological Behavior Regulation of Graphene Nanocrystallites Embedded Carbon Film by Fluorine Plasma Etching [J]. Journal of Mechanical Engineering, 2024, 60(15): 216-226. |
[7] | WANG Youqiang, XU Ying, MO Jun, HE Yan, ZHAO Tao, NI Chenbing. Experimental Study on the Effect of Water-based Magnetic Fluid on the Tribological Properties of TC4 and Si3N4 under the Action of a Magnetic Field [J]. Journal of Mechanical Engineering, 2024, 60(7): 174-183. |
[8] | CHEN Shouan, XIAO Ke, CHENG Gong, HAN Yanfeng. Friction and Contact Properties of Tooth Surfaces Considering Surface Topography under Mixed Lubrication [J]. Journal of Mechanical Engineering, 2024, 60(7): 184-194. |
[9] | JIANG Xinchi, LU Chun, MO Jiliang, CHEN Xiaoting, ZHANG Qinghe, ZHAO Jing. Simulation of High-temperature Wear Degradation of Train Brake Pad Friction Block Considering Temperature-dependent Wear Rate [J]. Journal of Mechanical Engineering, 2024, 60(7): 195-202. |
[10] | ZHU Shaoyu, ZHANG Xiangjun, SUN Jun, WANG Dagang. Average Flow Model for Micropolar Fluid Lubrication of Rough Surface Bearings [J]. Journal of Mechanical Engineering, 2024, 60(7): 203-211. |
[11] | XIANG Zaiyu, MO Jiliang, HE Deqiang, ZHU Song, ZHAI Caizhou, DU Liqing. Friction-induced Vibration and Noise Reduction of High-speed Train Braking via a Sandwich Damping [J]. Journal of Mechanical Engineering, 2024, 60(5): 196-208. |
[12] | JIN Xuyang, LI Xinming, LIU Yao, YANG Ping, GUO Feng, GAO Junbin. Observation of Lubricant Replenishment under Cyclic Loading [J]. Journal of Mechanical Engineering, 2024, 60(3): 203-213. |
[13] | WANG Wei, WEI Chunyan, QU Yishen, DONG Shaowen, LÜ Fanfan, JIN Jie, WANG Kuaishe. Tribological Properties of Black Phosphorus Quantum Dots as Water-based Lubrication Additive [J]. Journal of Mechanical Engineering, 2024, 60(3): 226-237. |
[14] | WANG Wenjian, YUE Ziheng, XIANG Pengcheng, DING Haohao, LIN Qiang, CHEN Yong, GUO Jun, LIU Qiyue. Study on Experimental Simulation of Sanding Process for Train Wheel-rail Improving Adhesion and Sanding Effect [J]. Journal of Mechanical Engineering, 2023, 59(22): 424-432. |
[15] | GE Xiangyu, WU Xiaodong, SHI Qiuyu, SONG Shiyi, WANG Wenzhong. Friction Performances of Polyethylene Glycols at Steel Interface under External Electric Fields [J]. Journal of Mechanical Engineering, 2023, 59(21): 313-320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||