Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (21): 131-146.doi: 10.3901/JME.2023.21.131
Previous Articles Next Articles
ZHANG Leilei1, ZHAO Yanzhi2, ZHAO Tieshi2
Received:
2022-12-21
Revised:
2023-05-15
Online:
2023-11-05
Published:
2024-01-15
CLC Number:
ZHANG Leilei, ZHAO Yanzhi, ZHAO Tieshi. State of the Art of Axodes Traced by Parallel Mechanism[J]. Journal of Mechanical Engineering, 2023, 59(21): 131-146.
[1] EDGE W L. The theory of ruled surfaces[M]. Cambridge:Cambridge University Press, 2011. [2] POTTMANN H, WALLNER J. Computational line geometry[M]. Berlin:Springer Science & Business Media, 2009. [3] 陈子明,黄真,曹文熬. 空间少自由度并联机构瞬时螺旋运动轴线曲面的几何表示方法[J]. 燕山大学学报, 2012, 36(2):113-118. CHEN Ziming, HUANG Zhen, CAO Wenao. Geometric expression of axodes of spatial lower mobility parallel mechanism[J]. Journal of Yanshan University, 2012, 36(2):113-118. [4] 陈子明. 新型对称三自由度并联机构的研究[D]. 秦皇岛:燕山大学, 2012. CHEN Ziming. Study on novel symmetrical parallel mechanisms with three degrees of freedom[D]. Qinhuangdao:Yanshan University, 2012. [5] YU J J, JIN Z, KONG X W. Identification and comparison for continuous motion characteristics of three two-degree-of-freedom pointing mechanisms[J]. Journal of Mechanisms and Robotics, 2017, 9(5):1-13. [6] 于靖军,刘凯,孔宪文. 多模式机构研究进展[J]. 机械工程学报, 2020, 56(19):14-27. YU Jingjun, LIU Kai, KONG Xianwen. State of the art of multi-mode mechanisms[J]. Journal of Mechanical Engineering, 2020, 56(19):14-27. [7] LIU K, KONG X, YU J. Operation mode analysis of lower-mobility parallel mechanisms based on dual quaternions[J]. Mechanism and Machine Theory, 2019, 142:1-6. [8] LIU K, YU J, LIU X. Operation mode comparison of three 1T2R parallel mechanisms based on geometric constraints[C]//201916th International Conference on Ubiquitous Robots (UR), 2019:137-142. [9] OPHASWONGSE C, AGRAWAL S K. Optimal design of a novel 3-DOF orientational parallel mechanism for pelvic assistance on a wheelchair:An approach based on kinematic geometry and screw theory[J]. IEEE Robotics and Automation Letters, 2020, 5(2):3315-3322. [10] D'ALESSIO J, RUSSELL K, SODHI R S. On transfemoral prosthetic knee design using RRSS motion and axode generation[C]//Advances in Mechanism Design II, 2017:29-35. [11] HUNT K H. Kinematic geometry of mechanisms[M]. Oxford, UK:Oxford University Press, 1978. [12] 王德伦,汪伟. 机构运动微分几何学分析与综合[M]. 北京:机械工业出版社, 2014. WANG Delun, WANG Wei. The kinematic differential geometry and saddle synthesis of linkages[M]. Beijing:China Machine Press, 2014. [13] WANG D L, WANG W. Kinematic differential geometry and saddle synthesis of linkages[M]. Hoboken, USA:John Wiley & Sons Inc, 2015. [14] ONDER M, UGURLU H H, CALISKAN A. The euler-savary analogue equations of a point trajectory in lorentzian spatial motion[C]//Proceedings of the National Academy of Sciences India Section a-Physical Sciences, Springer-Verlag, 2013:119-127. [15] BOKELBERG E H, HUNT K H, RIDLEY P R. Spatial motion-I:Points of inflection and the differential geometry of screws[J]. Mechanism and Machine Theory, 1992, 27(1):1-15. [16] DOONER D B, GRIFFIS M W. On spatial euler-savary equations for envelopes[J]. Journal of Mechanical Design, 2006, 129(8):865-875. [17] YANG A T, KIRSON Y, ROTH B. On a kinematic curvature theory for ruled surfaces[C]//Proc. 4th World Congress on Theory of Machines and Mechanisms, Newcastle-upon-Tyne, 1975:737-742. [18] WANG D L, LIU J, XIAO D Z. Kinematic differential geometry of a rigid body in spatial motion-I. a new adjoint approach and instantaneous properties of a point trajectory in spatial kinematics[J]. Mechanism and Machine Theory, 1997, 32(4):419-432. [19] WANG D L, LIU J, XIAO D Z. Kinematic differential geometry of a rigid body in spatial motion-II. a new adjoint approach and instantaneous properties of a line trajectory in spatial kinematics[J]. Mechanism and Machine Theory, 1997, 32(4):433-444. [20] WANG D L, LIU J, XIAO D Z. Kinematic differential geometry of a rigid body in spatial motion-III. distribution of characteristic lines in the moving body in spatial motion[J]. Mechanism and Machine Theory, 1997, 32(4):445-457. [21] 汪伟. 机构离散运动几何学研究[D]. 大连:大连理工大学, 2016. WANG Wei. Discrete kinematic geometry of mechanism[D]. Dalian:Dalian University of Technology, 2016. [22] WANG P, ZHANG Y D, WAN M. Third order curvature analysis of conjugate surfaces[J]. Mechanism and Machine Theory, 2017, 107:87-104. [23] VIA A J, PETUYA V. A proposal for a formula of absolute pole velocities between relative poles[J]. Mechanism and Machine Theory, 2017, 114:74-84. [24] CERA M, PENNESTR E. Generalized burmester points computation by means of bottema's instantaneous invariants and intrinsic geometry[J]. Mechanism and Machine Theory, 2018, 129:316-335. [25] KAHVECI D, YAYL Y. Geometric kinematics of persistent rigid motions in three-dimensional minkowski space[J]. Mechanism and Machine Theory, 2022, 167:1-3. [26] CARRETERO J A, PODHORODESKI R P, NAHON M A, et al. Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator[J]. Journal of Mechanical Design, 1999, 122(1):17-24. [27] 黄真,赵永生,赵铁石. 高等空间机构学[M]. 2版. 北京:高等教育出版社, 2014. HUANG Zhen, ZHAO Yongsheng, ZHAO Tieshi. Advanced spatial mechanism[M]. 2nd ed. Beijing:Higher Education Press, 2014. [28] LI Q C, HERV J M. 1T2R parallel mechanisms without parasitic motion[J]. IEEE Transactions on Robotics, 2010, 26(3):401-410. [29] CHEN Z M, DING H F, CAO W A, et al. Axodes analysis of the multi-dof parallel mechanisms and parasitic motion[C]//Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, Oregon, USA:The American Society of Mechanical Engineers, 2013:1-9. [30] ZHANG L L, ZHAO Y Z, REN J K. Screw rolling between moving and fixed axodes traced by lower-mobility parallel mechanism[J]. Mechanism and Machine Theory, 2021, 163(104354):1-35. [31] ZHANG L L, ZHAO Y Z, ZHAO T S. Fundamental equation of mechanism kinematic geometry:Mapping curve in se(3) to counterpart in SE(3)[J]. Mechanism and Machine Theory, 2020, 146(103732):1-23. [32] 赵铁石,祁晓园,鹿玲,等. 被约束刚体连续运动的充分必要条件[J]. 燕山大学学报, 2000, 24(3):224-227. ZHAO Tieshi, QI Xiaoyuan, LU Lin, et al. Sufficient and necessary conditions of realizing continuous motion for a restricted rigid body[J]. Journal of Yanshan University, 2000, 24(3):224-227. [33] 赵铁石,赵永生,黄真. 欠秩并联机器人能连续转动转轴存在的物理条件和数学判据[J]. 机器人, 1999, 21(5):347-351. ZHAO Tieshi, ZHAO Yongsheng, HUANG Zhen. Physical and mathematical conditions of existence of axes about which platform of deficient-rank parallel robots can rotate continuously[J]. Robot, 1999, 21(5):347-351. [34] 李秦川,柴馨雪,陈巧红,等. 2-UPR-SPR并联机构转轴分析[J]. 机械工程学报, 2013, 49(21):62-69. LI Qinchuan, CHAI Xinxue, CHEN Qiaohong, et al. Analysis of rotational axes of 2-UPR-SPR parallel mechanism[J]. Journal of Mechanical Engineering, 2013, 49(21):62-69. [35] HUANG Z, TAO W S, FANG Y F. Study on the kinematic characteristics of 3 DOF in-parallel actuated platform mechanisms[J]. Mechanism and Machine Theory, 1996, 31(8):999-1007. [36] XU Y D, ZHAO Y, YUE Y, et al. Type synthesis of overconstrained 2R1T parallel mechanisms with the fewest kinematic joints based on the ultimate constraint wrenches[J]. Mechanism and Machine Theory, 2020, 147:1-13. [37] 许允斗,胡建华,张东胜,等. 一种所有转轴均连续的五自由度混联机器人机构[J]. 机械工程学报, 2018, 54(21):19-24. XU Yundou, HU Jianhua, ZHANG Dongsheng, et al. A kind of five degrees of freedom hybrid robot with all rotating shafts continuous[J]. Journal of Mechanical Engineering, 2018, 54(21):19-24. [38] 陈子明,张扬,黄坤,等. 一种无伴随运动的对称两转一移并联机构[J]. 机械工程学报, 2016, 52(3):9-17. CHEN Ziming, ZHANG Yang, HUANG Kun, et al. Symmetrical 2R1T parallel mechanism without parasitic motion[J]. Journal of Mechanical Engineering, 2016, 52(3):9-17. [39] 李博. 两种三自由度并联机构运动等效机构特性研究[D]. 秦皇岛:燕山大学, 2017. LI Bo. Characteristic analysis of two kinds of 3-DOF kinematically identical paralllel manipulators[D]. Qinhuangdao:Yanshan University, 2017. [40] CHEN Z, CHEN X, GAO M, et al. Motion characteristics analysis of a novel spherical two-degree-of-freedom parallel mechanism[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1):29. [41] ZHAO C, SONG J, CHEN X, et al. Optimum seeking of redundant actuators for M-RCM 3-UPU parallel mechanism[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1):121. [42] 李仕华,田志立,王子义,等. 具有连续转轴的对称2R1T三自由度并联机构型综合[J]. 机械工程学报, 2017, 53(23):74-82. LI Shihua, TIAN Zhili, WANG Ziyi, et al. Type synthesis of 2R1T symmetrical parallel mechanism with continuous rotation axes[J]. Journal of Mechanical Engineering, 2017, 53(23):74-82. [43] 田志立. 基于线几何与螺旋理论的几种并联机构连续转轴的研究[D]. 秦皇岛:燕山大学, 2017. TIAN Zhili. Continuous ratation axes study of some parallel mechanisms based on linegeometry and screw theory[D]. Qinhuangdao:Yanshan University, 2017. [44] 陈淼,张氢,陈文韬,等. 基于空间几何的无伴随运动并联机构分析与综合[J]. 机械工程学报, 2021, 57(1):77-85. CHEN Miao, ZHANG Qing, CHEN Wentao, et al. Analysis and type synthesis of parallel mechanisms without parasitic motion based on spatial geometry[J].Journal of Mechanical Engineering, 2021, 57(1):77-85. [45] 曹毅,居勇健,黄河,等. 具有两条连续确定转轴的PRR型并联机构型综合[J]. 华中科技大学学报, 2022, 50(1):125-131. CAO Yi, JU Yongjian, HUANG He, et al. Type synthesis of PRR parallel mechanisms with two continuous and determined rotational axes[J]. Journal Huazhong University of Science And Technology, 2022, 50(1):125-131. [46] 王靖朝. 无伴随运动的含耦合链的混联机构构型综合研究[D]. 秦皇岛:燕山大学, 2020. WANG Jingchao. Type synthesis of spatial multi-loop coupling mechanisms without parasitic motion[D]. Qinhuangdao:Yanshan University, 2020. [47] LI Q C, CHEN Q H, WU C Y, et al. Geometrical distribution of rotational axes of 3-[P] [S] parallel mechanisms[J]. Mechanism and Machine Theory, 2013, 65:46-57. [48] HUANG C, SUGIMOTO K, PARKIN I. The correspondence between finite screw systems and projective spaces[J]. Mechanism and Machine Theory, 2008, 43(1):50-56. [49] ZLATANOV D. The representation of the general three-system of screws by a sphere[J]. Mechanism and Machine Theory, 2012, 49:315-331. [50] HATHOUT F, BEKAR M, YAYLI Y. Ruled surfaces and tangent bundle of unit 2-sphere[J]. International Journal of Geometric Methods in Modern Physics, 2017, 14(10):1-14. [51] SELIG J M. 机器人学的几何基础[M]. 2版. 杨向东, 译. 北京:清华大学出版社, 2008. SELIG J M. Geometric fundamentals of robotics[M]. 2nd ed. Translatef by Xiangdong YANG. Beijing:Tsinghua University Press, 2008. [52] CHEN G L, WANG H, LIN Z Q, et al. Identification of canonical basis of screw systems using general-special decomposition[J]. Journal of Mechanisms and Robotics, 2018, 10(3):1-8. [53] BALL R S. A Treatise on the theory of screws[M]. Cambridge, UK:Cambridge University Press, 1998. [54] PHILLIPS J. Freedom in machinery[M]. Cambridge, UK:Cambridge University Press, 2007. [55] ZHANG L, ZHAO Y, WEI X. Distribution characteristics of screw axes belonging to general three-system of screws[J]. Machines, 2022, 10(3):172. [56] HUANG Z, LI Q C, DING H F. Theory of parallel mechanisms[M]. Dordrecht, NED:Springer Science & Business Media, 2013. [57] TSAI M J, LEE H W. On the special bases of two- and three-screw systems[J]. Journal of Mechanical Design, 1993, 115(3):540-546. [58] PARKIN J A. Co-ordinate transformations of screws with applications to screw systems and finite twists[J]. Mechanism and Machine Theory, 1990, 25(6):689-699. [59] PARKIN I A. Finding the principal axes of screw systems[C]//ASME 1997 Design Engineering Technical Conferences, 1997:1-9. [60] RICO J M, DUFFY J. A general method for the computation of the canonical form of three-systems of infinitesimal screws[J]. Robotica, 1998, 16(1):37-45. [61] BANDYOPADHYAY S, GHOSAL A. Analytical determination of principal twists in serial, parallel and hybrid manipulators using dual vectors and matrices[J]. Mechanism and Machine Theory, 2004, 39(12):1289-1305. [62] BANDYOPADHYAY S, GHOSAL A. An eigenproblem approach to classical screw theory[J]. Mechanism and Machine Theory, 2009, 44(6):1256-1269. [63] ZHAO J S, ZHOU H X, FENG Z J, et al. An algebraic methodology to identify the principal screws and pitches of screw systems[C]//Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, SAGE Journals, 2009:1931-1941. [64] ZHANG W X, XU Z C. Algebraic construction of the three-system of screws[J]. Mechanism and Machine Theory, 1998, 33(7):925-930. [65] FANG Y F, HUANG Z. Analytical identification of the principal screws of the third order screw system[J]. Mechanism and Machine Theory, 1998, 33(7):987-992. [66] WALDRON K J. The constraint analysis of mechanisms[J]. Journal of Mechanisms, 1966, 1(2):101-114. [67] HUANG Z, LIU J F, ZENG D X. A general methodology for mobility analysis of mechanisms based on constraint screw theory[J]. Science in China Series E:Technological Sciences, 2009, 52(5):1337-1347. [68] 黄真. 空间机构学[M]. 北京:机械工业出版社, 1991. HUANG Zhen. Advanced spatial mechanism[M]. Beijing:China Machine Press, 1991. [69] 黄真,孔令富,方跃法. 并联机器人机构学理论及控制[M]. 北京:机械工业出版社, 1997. HUANG Zhen, KONG Lingfu, FANG Yuefa. Mechanism theory and control of parallel manipulators[M]. Beijing:China Machine Press, 1997. [70] DAI J S, HUANG Z, LIPKIN H. Mobility of overconstrained parallel mechanisms[J]. Journal of Mechanical Design, 2004, 128(1):220-229. [71] YUAN M S C, FREUDENSTEIN F, WOO L S. Kinematic analysis of spatial mechanisms by means of screw coordinates:Part 2-analysis of spatial mechanisms[J]. Journal of Engineering for Industry, 1971, 93(1):67-73. [72] SUTHERLAND G, ROTH B. A transmission index for spatial mechanisms[J]. Journal of Engineering for Industry, 1973, 95(2):589-597. [73] TSAI M J, LEE H W. Generalized evaluation for the transmission performance of mechanisms[J]. Mechanism and Machine Theory, 1994, 29(4):607-618. [74] LIU X J, WU C, WANG J S. A new approach for singularity analysis and closeness measurement to singularities of parallel manipulators[J]. Journal of Mechanisms and Robotics, 2012, 4(4):1-10. [75] MCCARTHY J M. An introduction to theoretical kinematics[M]. Cambridge, Massachusetts, London:The MIT Press, 1990. [76] 戴建生. 机构学与机器人学的几何基础与旋量代数[M]. 北京:高等教育出版社, 2014. DAI Jiansheng. Geometrical foundations and screw algebra for mechanisms and robotics[M]. Beijing:Higher Education Press, 2014. [77] CHEN C, ANGELES J. Generalized transmission index and transmission quality for spatial linkages[J]. Mechanism and Machine Theory, 2007, 42(9):1225-1237. [78] HUANG Z, LI Q C. General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators[J]. The International Journal of Robotics Research, 2002, 21(2):131-145. [79] HUANG Z, LI S H, ZUO R G. Feasible instantaneous motions and kinematic characteristics of a special 3-DOF 3-UPU parallel manipulator[J]. Mechanism and Machine Theory, 2004, 39(9):957-970. [80] WANG J S, WU C, LIU X J. Performance evaluation of parallel manipulators:motion/force transmissibility and its index[J]. Mechanism and Machine Theory, 2010, 45(10):1462-1476. [81] SKREINER M. A study of the geometry and the kinematics of instantaneous spatial motion[J]. Journal of Mechanisms, 1966, 1(2):115-143. [82] YUAN M S C, FREUDENSTEIN F. Kinematic analysis of spatial mechanisms by means of screw coordinates:part 1-screw coordinates[J]. Journal of Engineering for Industry, 1971, 93(1):61-66. [83] SLAVUTIN M, SHAI O, SHEFFER A, et al. A novel criterion for singularity analysis of parallel mechanisms[J]. Mechanism and Machine Theory, 2019, 137:459-475. [84] FIGLIOLINI G, REA P, ANGELES J. The synthesis of the axodes of RCCC linkages[J]. Journal of Mechanisms and Robotics, 2015, 8(2):0210111- 0210119.10.1115/1.4031950. [85] BROCKETT R W, STOKES A, PARK F. A geometrical formulation of the dynamical equations describing kinematic chains[C]//Proceedings of IEEE International Conference on Robotics and Automation, Atlanta, GA, USA:IEEE, 1993:637-641. [86] SOMMER H J. Jerk analysis and axode geometry of spatial linkages[J]. Journal of Mechanical Design, 2008, 130(4):1-6. [87] NURAHMI L, SCHADLBAUER J, CARO S, et al. Kinematic analysis of the 3-RPS cube parallel manipulator[J]. Journal of Mechanisms and Robotics, 2015, 7(1):1-11.10.1115/1.4029305. [88] NURAHMI L, SCHADLBAUER J, HUSTY M, et al. Motion capability of the 3-RPS cube parallel manipulator[C]//Advanced in Robot Kinematics, Cham:Springer, 2014:527-535. [89] NURAHMI L, GAN D M. Reconfiguration of a 3-(rR)PS metamorphic parallel mechanism based on complete workspace and operation mode analysis[J]. Journal of Mechanisms and Robotics, 2019, 12(1):1-15. [90] PFURNER M, SCHADLBAUER J. The instantaneous screw axis of motions in the kinematic image space[C]//Computational Kinematics Mechanisms and Machine Science, Cham:Springer, 2018:544-551. [91] SUGIMOTO K, DUFFY J. Application of linear algebra to screw systems[J]. Mechanism and Machine Theory, 1982, 17(1):73-83. [92] YU J J, YU J Z, WU K, et al. Design of constant-velocity transmission devices using parallel kinematics principle[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 2014:1-9. [93] 王国彪,刘辛军. 初论现代数学在机构学研究中的作用与影响[J]. 机械工程学报, 2013, 49(3):1-9. WANG Guobiao, LIU Xinjun. Role and influence of modern mathematics in mechanisms[J]. Journal of Mechanical Engineering, 2013, 49(3):1-9. [94] MURRAY R M, LI Z X, SASTRY S S. A mathematical introduction to robotics manipulation[M]. Boca Raton, USA:CRC Press, 1994. [95] 于靖军,刘辛军,丁希仑,等. 机器人机构学的数学基础[M]. 北京:机械工业出版社, 2008. YU Jingjun, LIU Xinjun, DING Xilun, et al. Mathematic foundation of mechanisms and robotics[M]. Beijing:China Machine Press, 2008. [96] SELIG J M. Geometric fundamentals of robotics[M]. 2nd ed. New York:Springer Science & Business Media, 2004. [97] SELIG J M, CARRICATO M. Persistent rigid-body motions and study's "ribaucour" problem[J]. Journal of Geometry, 2017, 108(1):149-169. [98] BOTTEMA O, ROTH B. Theoretical kinematics[M]. New York:Dover Publications, Inc., 1990. [99] WU Y Q, CARRICATO M. Identification and geometric characterization of lie triple screw systems and their exponential images[J]. Mechanism and Machine Theory, 2017, 107:305-323. [100] PARK F C. Computational aspects of the product-of-exponentials formula for robot kinematics[J]. IEEE Transactions on Automatic Control, 1994, 39(3):643-647. [101] ŽEFRAN M, KUMAR V, CROKE C. Choice of riemannian metrics for rigid body kinematics[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Irvine, California, USA:American Society of Mechanical Engineers, 1996:1-11. [102] MCCARTHY J M, ROTH B. The curvature theory of line trajectories in spatial kinematics[J]. Journal of Mechanical Design, 1981, 103(4):718-724. [103] CUI L, DAI J S. Posture, workspace, and manipulability of the metamorphic multifingered hand with an articulated palm[J]. Journal of Mechanisms and Robotics, 2011, 3(2):021001-021007. [104] LIU H L, LIU Y X, JUNG S D. Ruled invariants and associated ruled surfaces of a space curve[J]. Applied Mathematics and Computation, 2019, 348:479-486. [105] OH Y, ABHISHESH P, RYUH B. Study on robot trajectory planning by robot end-effector using dual curvature theory of the ruled surface[J]. International Journal of Mechanical and Materials Engineering, 2017, 11(3):577-582. [106] KIRSON Y D. Higher order curvature theory in space kinematics[D]. Berkeley:University of California, Berkeley, 1975. [107] KIRSON Y D, YANG A T. Instantaneous invariants in three-dimensional kinematics[J]. Journal of Applied Mechanics, 1978, 45(2):409-414. [108] MERLET J P. Jacobian, manipulability, condition number, and accuracy of parallel robots[J]. Journal of Mechanical Design, 2005, 128(1):199-206. [109] LIU X J, WANG J S. Parallel kinematics:Type, kinematics, and optimal design[M]. Berlin, Heidelberg:Springer Science & Business, 2014. [110] 陈祥,谢福贵,刘辛军. 并联机构中运动/力传递功率最大值的评价[J]. 机械工程学报, 2014, 50(3):1-9. CHEN Xiang, XIE Fugui, LIU Xinjun. Evaluation of the maximum value of motion/force transmission power in parallel manipulators[J]. Journal of Mechanical Engineering, 2014, 50(3):1-9. [111] 数学辞海编辑委员会. 数学辞海(第一卷)[M]. 太原:山西教育出版社, 2002. Editorial Board of Mathematics Dictionary. Mathematics dictionary(volume 1)[M]. Taiyuan:Shanxi Education Press, 2002. |
[1] | SHEN Huiping, LI Ju, ZHU Xiaorong, LI Tao, MENG Qingmei, ZHU Wei, YE Pengda. New Method and Formula for Degree-of-freedom Calculation of Parallel Mechanism Based on Optimal Paths [J]. Journal of Mechanical Engineering, 2024, 60(19): 40-52. |
[2] | ZHANG Leiyu, CHANG Yawei, YU Zhendong, YU Yang, LI Jianfeng, ZHANG Feiran. Design and Kinematic Analysis of Parallel Wrist Rehabilitation Robot [J]. Journal of Mechanical Engineering, 2024, 60(17): 123-132. |
[3] | LIANG Xu, ZHANG Jianyong, LI Guotao, SU Tingting, HE Guangping, HOU Zengguang. Redundant Parallel Mechanism for Fracture Reduction Surgery: Design, Modeling and Performance Analysis [J]. Journal of Mechanical Engineering, 2024, 60(17): 133-146. |
[4] | TIAN Bo, LOU Junqiang, SHEN Jiaxu, LIU Li, CHENG Tehuan, LI Guoping, WEI Yanding. Design, Fabrication and Realization of a Parallel Microrobot at the Millimeter Scale for Minimally Invasive Surgery [J]. Journal of Mechanical Engineering, 2024, 60(17): 147-155. |
[5] | ZHENG Siyuan, TIAN Junjie, WANG Lipeng, LIU Shichuang, WANG Hongbo, NIU Jianye. Design and Analysis of Compact Rigid-flexible Coupled Waist Rehabilitation Robot [J]. Journal of Mechanical Engineering, 2024, 60(17): 156-166. |
[6] | WU Zhen, LI Qinchuan, YE Wei. Inverse Position Optimization Method of Kinematically Redundant Parallel Mechanisms Based on Natural Frequency [J]. Journal of Mechanical Engineering, 2024, 60(13): 297-307. |
[7] | LIU Xiaofei, CHEN Ran, WAN Bo, GUO Mengtao, ZHAO Yongsheng. Dynamics Analysis and Control Strategy Research of More Redundantly Actuated Parallel Mechanism 2RPU+2UPR+RPR [J]. Journal of Mechanical Engineering, 2024, 60(11): 237-249. |
[8] | SUN Peng, DAI Xianyong, LI Yanbiao, YANG Kui. Design and Analysis of Wrist Joint Based on 3-RRP Parallel Mechanism [J]. Journal of Mechanical Engineering, 2023, 59(5): 112-120. |
[9] | GUO Jianying, LIANG Jin, LIU Jianze, TENG Guangrong, SHI Wei, LIU Liangbao. Design and Precision Analysis of Multi-sided Parallel Loading Device for Aircraft Engine Casing [J]. Journal of Mechanical Engineering, 2023, 59(23): 23-32. |
[10] | LUO Zimao, LI Yanwen, PENG Hongxin, HUO Weihao, CHEN Ziming. Singular Properties Research on 3-RRS Parallel Mechanisms [J]. Journal of Mechanical Engineering, 2023, 59(23): 33-45. |
[11] | YANG Yibo, WANG Manxin. Modeling and Analysis of Position Accuracy Reliability of R(RPS&RP)& 2-UPS Parallel Mechanism [J]. Journal of Mechanical Engineering, 2023, 59(15): 62-72. |
[12] | YOU Jingjing, WANG Linkang, LIU Yunping, LI Chenggang, WU Hongtao. Inverse Dynamics of Six-axis Accelerometers Based on Parallel Mechanisms [J]. Journal of Mechanical Engineering, 2022, 58(6): 10-25. |
[13] | ZHANG Bang-cheng, LIU Shuai, YU Jun-zhi, PANG Zai-xiang, ZHANG Xi-yu. Design and Inverse Kinematics Analysis of Wrist Parallel Rehabilitation Mechanism:A Rope Driven-based Method [J]. Journal of Mechanical Engineering, 2022, 58(5): 57-68. |
[14] | LI Shuang, LI Yanwen, ZHAO Meixin, CHEN Ziming, ZHU Weiguo. Synthesis and Analysis of a Lower-extremity Rehabilitation in Parallel [J]. Journal of Mechanical Engineering, 2022, 58(3): 55-64. |
[15] | LI Yongquan, ZHENG Tianyu, JIANG Hongsheng, ZHANG Duo, ZHANG Lijie. Type Synthesis of New Kinematic Bifurcation Parallel Mechanism Based on Atlas Method [J]. Journal of Mechanical Engineering, 2022, 58(23): 1-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||