Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (20): 401-435.doi: 10.3901/JME.2023.20.401
Previous Articles Next Articles
KE Yinglin1,2, QU Weiwei1, LI Jiangxiong1, CHENG Liang1, KE Zhenzheng3, WU Jianbo3, ZHU Jianbin3, YANG Di1, YANG Qian1, CAI Zhijia3, WANG Qing1, ZHU Weidong1, DONG Huiyue1, XU Qiang1, YU Cijun1, WANG Qingtao3, NI Zuoxi3
Received:
2023-07-05
Revised:
2023-08-29
Online:
2023-10-20
Published:
2023-12-08
CLC Number:
KE Yinglin, QU Weiwei, LI Jiangxiong, CHENG Liang, KE Zhenzheng, WU Jianbo, ZHU Jianbin, YANG Di, YANG Qian, CAI Zhijia, WANG Qing, ZHU Weidong, DONG Huiyue, XU Qiang, YU Cijun, WANG Qingtao, NI Zuoxi. Researches on Automated Placement Technologies and Equipment for Carbon Fiber Reinforced Composites:A State-of-the-art Review[J]. Journal of Mechanical Engineering, 2023, 59(20): 401-435.
[1] 黄亿洲,王志瑾,刘格菲. 碳纤维增强复合材料在航空航天领域的应用[J]. 西安航空学院学报,2021,39(5):44.HUANG Yizhou,WANG Zhijin,LIU Gefei. Application of carbon fiber reinforced composites in aerospace field[J]. Journal of Xi’an Aeronautical Institute,2021,39(5):44. [2] 马志阳,高丽敏,徐吉峰. 复合材料在大飞机主承力结构上的应用与发展趋势[J]. 航空制造技术,2021,64(11):24-30. MA Zhiyang,GAO Limin,XU Jifeng. Application and development trend of composite materials in main load-bearing structure of large aircraft[J]. Aeronautical Manufacturing Technology,2021,64(11):24-30. [3] 贾振元,赖一楠,王福吉,等. 复合材料构件制造关键基础科学问题[J]. 中国科学基金,2021,35(5):764-773. JIA Zhenyuan,LAI Yinan,WANG Fuji,et al. Key basic scientific problems of composite component manufacturing[J]. National Natural Science Foundation of China,2021,35(5):764-773. [4] SOUTIS C. Carbon fiber reinforced plastics in aircraft construction[J]. Materials Science and Engineering: A,2005,412(1-2):171-176. [5] 唐见茂,李建龙. 航空航天复合材料应用的最新进展[J]. 航天器环境工程,2010,27(5):552-557. TANG Jianmao,LI Jianlong. The latest progress in the application of aerospace composite materials[J]. Spacecraft Environment Engineering,2010,27(5):552-557. [6] KATNAM K B,DA SILVA L,YOUNG T. Bonded repair of composite aircraft structures:A review of scientific challenges and opportunities[J]. Progress in Aerospace Sciences,2013,61:26-42. [7] SOUTIS C. Fibre reinforced composites in aircraft construction[J]. Progress in Aerospace Sciences,2005,41(2):143-151. [8] 陈吉平,苏佳智,郑义珠,等. 复合材料在A400M军用运输机上的应用[J]. 航空制造技术,2013,56(15):82-85. CHEN Jiping,SU Jiazhi,ZHENG Yizhu,et al. Application of composite materials in A400M military transport aircraft[J]. Aeronautical Manufacturing Technology,2013,56(15):82-85. [9] 刘爱平,林仁伟,陈壁茂. 民用飞机复合材料结构在位修理环境控制方法研究[J]. 航空维修与工程,2021(1):60-62. LIU Aiping,LIN Renwei,CHEN Bimao. Research on the environmental control method of composite structure in-situ repair for civil aircraft[J]. Aviation Maintenance and Engineering,2021(1):60-62. [10] AGYEPONG L,RAFLA M,TOMLINSON D,et al. Light weight aerospace assembly fixture[R]. SAE,2015-01-2496,2015. [11] NAJMON J C,RAEISI S,TOVAR A. Review of additive manufacturing technologies and applications in the aerospace industry[J]. Additive Manufacturing for the Aerospace Industry,2019:7-31. [12] 陈绍杰. 浅谈空客A380的复合材料应用[J]. 高科技纤维与应用,2008,33(4):1-4.CHEN Shaojie. Application of Airbus A380 composite material[J]. High-tech Fiber and Application,2008,33(4):1-4. [13] 林德春,潘鼎,高健,等. 碳纤维复合材料在航空航天领域的应用[J]. 玻璃钢,2007(1):18-28. LIN Dechun,PAN Ding,GAO Jian,et al. The application of carbon fiber composites in aerospace field[J]. Fiber Glass-reinforced Plastics,2007(1):18-28. [14] 陈博. 国内外复合材料工艺设备发展述评之八——热压罐成型[J/OL].复合材料科学与工程,2022,[2022-02-14]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD65SyGdPSZrdN9Xo6IKzj4fLo3cECJD5EwzgH2NaI5RPnBkeesxkQhlp&uniplatform=NZKPT. CHEN Bo. Review on the development of composite process equipment at home and abroad (VIII) - autoclave molding[J/OL]. Composite Materials Science and Engineering,2022,[2022-02-14]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD65SyGdPSZrdN9Xo6IKzj4fLo3cECJD5EwzgH2NaI5RPnBkeesxkQhlp&uniplatform=NZKPT. [15] 高嘉鑫. 复杂回转曲面自动铺放路径规划关键技术研究[D]. 杭州:浙江大学,2022. GAO Jiaxin. Research on key technologies of automatic placement path planning for complex rotary surfaces[D]. Hangzhou:Zhejiang Univerrsity,2022. [16] 丁希仑,罗伟恒,刘斐,等. 自动铺丝成型构件缺陷在线检测技术进展[J]. 北京航空航天大学学报,2022,48(9):1721-1733.DING Xilun,LUO Weiheng,LIU Fei,et al. Progress of on-line defect detection technology for automatic fiber placement forming components[J]. Journal of Beihang University,2022,48(9):1721-1733. [17] PAN H,QU W,YANG D,et al. Analysis and characterization of interlaminar tack for different prepreg materials during automated fiber placement[J]. Polymer Composites,2022,43(7):4737-4748. [18] 宋清华,王跃全,石甲琪,等. 环境时效对预浸料自动铺放工艺粘性的影响[J]. 纤维复合材料,2021,38(4):28-32. SONG Qinghua,WANG Yuequan,SHI Jiaqi,et al. Effect of environmental aging on the viscosity of prepreg automatic placement process[J]. Fibrous Composite,2021,38(4):28-32. [19] ENGELHARDT R,IRMANPUTRA R,BRATH K,et al. Thermoset prepreg compaction during automated fiber placement and vacuum debulking[J]. Procedia CIRP,2019,85:153-158. [20] WANG H,WANG W,WANG H,et al. Thermal management for thermoset automated fiber placement based on infrared heater structure arrangement[J]. Chinese Journal of Aeronautics,2022,35(1):173-183. [21] HÖRMANN P,STELZL D,LICHTINGER R,et al. On the numerical prediction of radiative heat transfer for thermoset automated fiber placement[J]. Composites Part A:Applied Science and Manufacturing,2014,67:282-288. [22] LICHTINGER R,HÖRMANN P,STELZL D,et al. The effects of heat input on adjacent paths during automated fibre placement[J]. Composites Part A:Applied Science and Manufacturing,2015,68:387-397. [23] ORTH T,KRAHL M,PARLEVLIET P,et al. Optical thermal model for LED heating in thermoset-automated fiber placement[J]. Advanced Manufacturing:Polymer& Composites Science,2018,4(3):73-82. [24] QU W,PAN H,YANG D,et al. As-built FE thermal analysis for complex curved structures in automated fiber placement[J]. Simulation Modelling Practice and Theory,2022,118:102561. [25] AIZED T,SHIRINZADEH B. Robotic fiber placement process analysis and optimization using response surface method[J]. The International Journal of Advanced Manufacturing Technology,2011,55:393-404. [26] ZACHERL L,SHADMEHRI F,ROTHER K. Determination of convective heat transfer coefficient for hot gas torch (HGT)-assisted automated fiber placement (AFP) for thermoplastic composites[J]. Journal of Thermoplastic Composite Materials,2023,36(1):73-95. [27] KHAN M A,MITSCHANG P,SCHLEDJEWSKI R. Identification of some optimal parameters to achieve higher laminate quality through tape placement process[J]. Advances in Polymer Technology,2010,29(2):98-111. [28] ZHAO C,XIAO J,HUANG W,et al. Layup quality evaluation of fiber trajectory based on prepreg tow deformability for automated fiber placement[J]. Journal of Reinforced Plastics and Composites,2016,35(21):1576-1585. [29] 都涛. 基于碳纤维预浸料铺放的工艺参数分析与试验研究[D]. 杭州:浙江大学,2018. DU Tao. Process parameter analysis and experimental research based on carbon fiber prepreg placement[D]. Hangzhou:Zhejiang University,2018. [30] KHAN M A,MITSCHANG P,SCHLEDJEWSKI R. Parametric study on processing parameters and resulting part quality through thermoplastic tape placement process[J]. Journal of Composite Materials,2013,47(4):485-499. [31] 段玉岗,刘芬芬,陈耀,等. 纤维铺放压紧力及预浸带加热温度对复合材料力学性能的影响[J]. 复合材料学报,2012,29(4):148-156. DUAN Yugang,LIU Fenfen,CHEN Yao,et al. The effects of fiber placement pressure and prepreg tape heating temperature on the mechanical properties of the composites[J]. Acta Materiae Compositae Sinica,2012,29(4):148-156. [32] SONMEZ F O,AKBULUT M. Process optimization of tape placement for thermoplastic composites[J]. Composites Part A:Applied Science and Manufacturing,2007,38(9):2013-2023. [33] 彭啸,舒展,都涛,等. 面向铺放工艺的预浸料剥离仿真与试验验证[J]. 航空学报,2018,39(12):387-400. PENG Xiao,SHU Zhan,DU Tao,et al. Simulation and experimental verification of prepreg peeling for laying process[J]. Acta Aeronautica et Astronautica Sinica,2018,39(12):387-400. [34] 舒展,彭啸,李发飞,等. 基于探针试验的预浸料黏性内聚力模型[J]. 航空学报,2018,39(2):280-292. SHU Zhan,PENG Xiao,LI Fafei,et al. Viscous cohesion model of prepreg based on probe test[J]. Acta Aeronautica et Astronautica Sinica,2018,39(2):280-292. [35] JIANG J,HE Y,WANG H,et al. Modeling and experimental validation of compaction pressure distribution for automated fiber placement[J]. Composite Structures,2021,256:113101. [36] JIANG J,HE Y,KE Y. Pressure distribution for automated fiber placement and design optimization of compaction rollers[J]. Journal of Reinforced Plastics and Composites,2019,38(18):860-870. [37] 褚奇奕. 自动铺放过程中非完整接触约束下的纤维变形调控及缺陷抑制研究[D]. 南京:南京航空航天大学,2017. CHU Qiyi. Research on fiber deformation control and defect suppression under non-complete contact constraints during automatic fiber placement process[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2017. [38] CHU Q,LI Y,XIAO J,et al. Placeability restricted by in-complete contact between laying roller and mould in an automated fiber placement process[J]. Journal of Reinforced Plastics and Composites,2018,37(7):475-489. [39] ZHOU P. Numerical simulation for the pressure distribution of the compaction roller in in-situ consolidation processes[D]. Delft:Delft University of Technology,2018. [40] BAKHSHI N,HOJJATI M. Effect of compaction roller on layup quality and defects formation in automated fiber placement[J]. Journal of Reinforced Plastics and Composites,2020,39(1-2):3-20. [41] 何玉筱. 复合材料丝束自动铺放压力场关键技术研究[D]. 杭州:浙江大学,2022. HE Yuxiao. Research on key techniques of compaction pressure distribution for composites automated fiber placement[D]. Hangzhou:Zhejiang University,2022. [42] CHU Q,LI Y,XIAO J,et al. Processing and characterization of the thermoplastic composites manufactured by ultrasonic vibration-assisted automated fiber placement[J]. Journal of Thermoplastic Composite Materials,2018,31(3):339-358. [43] 蔡立成,彭啸,汪海晋,等. 铺放工艺参数对预浸料丝束曲线铺贴质量的影响[J]. 复合材料学报,2021,38(6):1795-1808. CAI Licheng,PENG Xiao,WANG Haijin,et al. The influence of laying process parameters on the quality of prepreg tow curve laying[J]. Acta Materiae Compositae Sinica,2021,38(6):1795-1808. [44] ROUSSEAU G,WEHBE R,HALBRITTER J,et al. Automated fiber placement path planning:A state-of-the-art review[J]. Computer-Aided Design and Applications,2019,16(2):172-203. [45] 罗海燕,李勇,肖军,等. 复合材料自动铺带技术研究——曲面铺带轨迹算法[J]. 航空学报,2009,30(9):1782-1787. LUO Haiyan,LI Yong,XIAO Jun,et al. Research on automatic tape laying technology of composite materials-Curved tape laying trajectory algorithm[J]. Acta Aeronautica et Astronautica Sinica,2009,30(9):1782-1787. [46] 王松. 自动铺带自然路径计算方法研究[D]. 南京:南京航空航天大学,2016. WANG Song. Research on natural path calculation method of automated tape placement[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2016. [47] SHIRINZADEH B,CASSIDY G,OETOMO D,et al. Trajectory generation for open-contoured structures in robotic fibre placement[J]. Robotics and Computer-Integrated Manufacturing,2007,23(4):380-394. [48] WANG X P,AN L L,ZHANG L Y,et al. Uniform coverage of fibres over open-contoured freeform structure based on arc-length parameter[J]. Chinese Journal of Aeronautics,2008,21(6):571-577. [49] LI L,WANG X,XU D,et al. A placement path planning algorithm based on meshed triangles for carbon fiber reinforce composite component with revolved shape[J]. International Journal on Control Systems and Applications (IJCS),2014,1(1):23-32. [50] 李俊斐,王显峰,肖军,等. 网格化曲面的固定角度铺丝轨迹规划算法[J]. 计算机辅助设计与图形学学报,2013,25(9):1410-1415. LI Junfei,WANG Xianfeng,XIAO Jun,et al. Fixed angle fiber placement trajectory planning algorithm for gridded surfaces[J]. Journal of Computeraided Design &,2013,25(9):1410-1415. [51] PEI J,WANG X,PEI J,et al. Path planning based on ply orientation information for automatic fiber placement on mesh surface[J]. Applied Composite Materials,2018,25:1477-1490. [52] SCHUELER K,MILLER J,HALE R. Approximate geometric methods in application to the modeling of fiber placed composite structures[J]. J. Comput. Inf. Sci. Eng.,2004,4(3):251-256. [53] LAND I B. Design and manufacture of advanced composite aircraft structures using automated tow placement[D]. Cambridge:Massachusetts Institute of Technology,1996. [54] WANG X,ZHANG W,ZHANG L. Intersection of a ruled surface with a free-form surface[J]. Numerical Algorithms,2007,46:85-100. [55] BLOM A W,SETOODEH S,HOL J M,et al. Design of variable-stiffness conical shells for maximum fundamental eigenfrequency[J]. Computers & Structures,2008,86(9):870-878. [56] BLOM A W,TATTING B F,HOL J M,et al. Fiber path definitions for elastically tailored conical shells[J]. Composites Part B:Engineering,2009,40(1):77-84. [57] BLOM A W. Structural performance of fiber-placed,variable-stiffness composite conical and cylindrical shells[D]. Delft:Delft University of Technology,2010. [58] 曾伟,肖军,李勇,等. 回转体自动铺丝轨迹规划与覆盖性分析[J]. 宇航学报,2010,31(1):239-243. ZENG Wei,XIAO Jun,LI Yong,et al. Trajectory planning and coverage analysis of rotary automatic fiber placement[J]. Journal of Chinese Society of Astronautics,2010,31(1):239-243. [59] 王念东,刘毅,肖军. 复合材料管状结构自动铺丝路径算法[J]. 计算机辅助设计与图形学学报,2008,20(2):228-233. WANG Niandong,LIU Yi,XIAO Jun. Automatic fiber placement path algorithm for composite tubular structure[J]. Journal of Computeraided Design & Amp,2008,20(2):228-233. [60] ZHANG P,SUN R,HUANG T. A geometric method for computation of geodesic on parametric surfaces[J]. Computer Aided Geometric Design,2015,38:24-37. [61] 张婷婷,王小平. CAD曲面的测地线计算方法[J]. 机械设计与制造工程,2014,43(5):16-20. ZHANG Tingting,WANG Xiaoping. Geodesic calculation method of CAD surface[J]. Mechanical Design and Manufacturing Engineering,2014,43(5):16-20. [62] 胡森,杨勋年. 保测地曲率的曲面曲线设计[J]. 计算机辅助设计与图形学学报,2005(5):981-985. HU Sen,YANG Xunnian. Design of surface curve preserving geodesic curvature[J]. Journal of Computeraided Design & Amp,2005(5):981-985. [63] 熊文磊. 基于网格化曲面的自动铺丝轨迹规划研究[D]. 南京:南京航空航天大学,2012. XIONG Wenlei. Research on automatic fiber placement trajectory planning based on gridded surface[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2012. [64] YAN L,CHEN Z C,SHI Y,et al. An accurate approach to roller path generation for robotic fibre placement of free-form surface composites[J]. Robotics and Computer-Integrated Manufacturing,2014,30(3):277-286. [65] BRUYNEEL M,ZEIN S. A modified fast marching method for defining fiber placement trajectories over meshes[J]. Computers & Structures,2013,125:45-52. [66] LEMAIRE E,ZEIN S,BRUYNEEL M. Optimization of composite structures with curved fiber trajectories[J]. Composite Structures,2015,131:895-904. [67] BLOM A W,STICKLER P B,GÜRDAL Z. Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction[J]. Composites Part B:Engineering,2010,41(2):157-165. [68] 马永前,张淑杰,许震宇. 纤维曲线铺放的变刚度复合材料层合板的屈曲[J]. 玻璃钢/复合材料,2009(5):31-35. MA Yongqian,ZHANG Shujie,XU Zhenyu. Buckling of variable stiffness composite laminates with fiber curve placement[J]. FRP/Composites,2009(5):31-35. [69] 蒋敏,吴保林. 基于丝束增减位置动态调整的自动丝束铺放路径覆盖性优化[J]. 玻璃钢/复合材料,2018(7):49-56. JIANG Min,WU Baolin. Coverage optimization of automatic tow placement path based on dynamic adjustment of tow position increase and decrease[J]. FRP/Composites,2018(7):49-56. [70] GAO J,QU W,YANG D,et al. Two-stage sector partition path planning method for automated fiber placement on complex surfaces[J]. Computer-Aided Design,2021,132:102983. [71] 孔斌,顾杰斐,陈普会,等. 变刚度复合材料结构的设计,制造与分析[J]. 复合材料学报,2017,34(10):2121-2133. KONG Bin,GU Jiefei,CHEN Puhui,et al. Design,fabrication and analysis of variable stiffness composite structures[J]. Acta Materiae Compositae Sinica,2017,34(10):2121-2133. [72] TOSH M,KELLY D. On the design,manufacture and testing of trajectorial fibre steering for carbon fibre composite laminates[J]. Composites Part A:Applied Science and Manufacturing,2000,31(10):1047-1060. [73] LI R,KELLY D,CROSKY A. Strength improvement by fibre steering around a pin loaded hole[J]. Composite Structures,2002,57(1-4):377-383. [74] HYER M W,LEE H. The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes[J]. Composite structures,1991,18(3):239-261. [75] MAROUENE A,BOUKHILI R,CHEN J,et al. Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite laminates–A numerical and experimental study[J]. Composite Structures,2016,140:556-566. [76] GURDAL Z,OLMEDO R. In-plane response of laminates with spatially varying fiber orientations-variable stiffness concept[J]. AIAA Journal,1993,31(4):751-758. [77] STEGMANN J,LUND E. Discrete material optimization of general composite shell structures[J]. International Journal for Numerical Methods in Engineering,2005,62(14):2009-2027. [78] TIAN Y,HUO Y H,SHI T L,et al. Filters for manufacturability in design optimization of variable stiffness composites[J]. Chinese Journal of Aeronautics,2021,34(4):153-159. [79] TIAN Y,SHI T,XIA Q. A parametric level set method for the optimization of composite structures with curvilinear fibers[J]. Computer Methods in Applied Mechanics and Engineering,2022,388:114236. [80] TATTING B F. Analysis and design of variable stiffness composite cylinders[D]. Montgomery County:Virginia Tech,1998. [81] 吴尘瑾,祖磊,李书欣,等. 变刚度复合材料层合板的纤维铺放路径设计及屈曲分析[J]. 玻璃钢/复合材料,2018(4):5-10. WU Chenjin,ZU Lei,LI Shuxin,et al. Fiber placement path design and buckling analysis of variable stiffness composite laminates[J]. FRP/Composites,2018(4):5-10. [82] MATSUZAKI R,MITSUI K,HIRANO Y,et al. Optimization of curvilinear fiber orientation of composite plates and its experimental validation[J]. Composite Structures,2021,255:112956. [83] PEDERSEN P. On optimal orientation of orthotropic materials[J]. Structural Optimization,1989(1):101-106. [84] CHENG H C,KIKUCHI N,MA Z D. An improved approach for determining the optimal orientation of orthotropic material[J]. Structural Optimization,1994,(10):101-112. [85] LUO J H,GEA H C. Optimal orientation of orthotropic materials using an energy based method[J]. Structural Optimization,1998(15):230-236. [86] LUO Y,CHEN W,LIU S,et al. A discrete-continuous parameterization (DCP) for concurrent optimization of structural topologies and continuous material orientations[J]. Composite Structures,2020,236:111900. [87] DENKENA B,SCHMIDT C,VÖLTZER K,et al. Thermographic online monitoring system for automated fiber placement processes[J]. Composites Part B:Engineering,2016,97:239-243. [88] 彭啸. 基于自动铺放工艺的预浸料丝束转向铺贴质量表征与调控[D]. 杭州:浙江大学,2019. PENG Xiao. Quality characterization and control of prepreg tow steering placement based on automatic placement process[D]. Hangzhou:Zhejiang University,2019. [89] SAWICKI A,MINGUETT P. The effect of intraply overlaps and gaps upon the compression strength of composite laminates[C]//39th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference and Exhibit. 1998:1786. [90] TUROSKI L E. Effects of manufacturing defects on the strength of toughened carbon/epoxy prepreg composites[D]. Bozeman:Montana State University,2000. [91] ZHOU W,CHENG Q,XU Q,et al. Deformation and fracture mechanisms of automated fiber placement pre-preg laminates under out-of-plane tensile loading[J]. Composite Structures,2021,255:112948. [92] GARNICH M R,KARAMI G. Localized fiber waviness and implications for failure in unidirectional composites[J]. Journal of Composite Materials,2005,39(14):1225-1245. [93] QIAN S,LIU X,YE Y,et al. Effect of gap and overlap fiber placement defects on the delamination behavior of L-shaped composite laminates[J]. Composite Structures,2021,268:113963. [94] BLOM A W,LOPES C S,KROMWIJK P J,et al. A theoretical model to study the influence of tow-drop areas on the stiffness and strength of variable-stiffness laminates[J]. Journal of Composite Materials,2009,43(5):403-425. [95] LI X,HALLETT S R,WISNOM M R. Modelling the effect of gaps and overlaps in automated fibre placement (AFP)-manufactured laminates[J]. Science and Engineering of Composite Materials,2015,22(2):115-129. [96] FAYAZBAKHSH K,NIK M A,PASINI D,et al. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by automated fiber placement[J]. Composite Structures,2013,97:245-251. [97] BEAKOU A,CANO M,LE CAM J B,et al. Modelling slit tape buckling during automated prepreg manufacturing:A local approach[J]. Composite structures,2011,93(10):2628-2635. [98] MATVEEV M Y,SCHUBEL P J,LONG A C,et al. Understanding the buckling behaviour of steered tows in automated dry fibre placement (ADFP)[J]. Composites Part A:Applied Science and Manufacturing,2016,90:451-456. [99] BELHAJ M,HOJJATI M. Wrinkle formation during steering in automated fiber placement:Modeling and experimental verification[J]. Journal of Reinforced Plastics and Composites,2018,37(6):396-409. [100] PAN H,YANG D,QU W,et al. Process-dependent wrinkle formation for steered tow during automated fiber placement:Modeling and experimental verification[J]. Thin-Walled Structures,2022,180:109928. [101] BAKHSHI N,HOJJATI M. Time-dependent wrinkle formation during tow steering in automated fiber placement[J]. Composites Part B:Engineering,2019,165:586-593. [102] BAKHSHI N,HOJJATI M. An experimental and simulative study on the defects appeared during tow steering in automated fiber placement[J]. Composites Part a-Applied Science and Manufacturing,2018,113:122-131. [103] RAJAN S,SUTTON M A,SOCKALINGAM S,et al. Simulations and experiments for automated fiber placement of prepreg slit tape:Wrinkle formation and fundamental observations[J]. Composites Part B:Engineering,2020,201:108287. [104] WEHBE R. Modeling of tow wrinkling in automated fiber placement based on geometrical considerations[D]. Columbia:University of South Carolina,2017. [105] WEHBE R,TATTING B,RAJAN S,et al. Geometrical modeling of tow wrinkles in automated fiber placement[J]. Composite Structures,2020,246:112394. [106] HEINECKE F,VAN DEN BRINK W,WILLE T. Assessing the structural response of automated fibre placement composite structures with gaps and overlaps by means of numerical approaches[C]//Proceedings of the 20th International Conference on Composite Materials. Aalborg University Aalborg,Denmark,2015. |
[1] | PENG Xiang, CHEN Kenan, WANG Mingbo, Yi Bing, LI Jiquan, JIANG Shaofei. Optimization Design of Stacking Sequence for Variable Thickness Composite Structure Based on Improved Stacking Sequence Table Method [J]. Journal of Mechanical Engineering, 2024, 60(19): 199-211. |
[2] | JIN Ziang, HAN Zhenyu, XIANG Yu, SUN Shouzheng, FU Hongya. Research Progress on Defect Characteristics and Influencing Factors of Variable Angle Fiber Placement [J]. Journal of Mechanical Engineering, 2022, 58(23): 164-177. |
[3] | SUN Shouzheng, ZHAO Yaoxu, WANG Yang, HAN Zhenyu. Design of Robotic Fiber Placement Machine and Process Optimization for Thermoplastic Composites [J]. Journal of Mechanical Engineering, 2021, 57(23): 209-219. |
[4] | TANG Zuyang, WANG Yaqiang, DONG Honggang. Progress of the Friction Stir Spot Welding in Lightweight Dissimilar Materials [J]. Journal of Mechanical Engineering, 2020, 56(6): 147-158. |
[5] | GAO Yicong, ZENG Siyuan, FENG Yixiong, ZHENG Hao, QIU Hao, TAN Jianrong. Review of Design of Programmable Morphing Composite Structures by 4D Printing [J]. Journal of Mechanical Engineering, 2020, 56(15): 26-38. |
[6] | SUN Wei, YAN Xianfei, WANG Zhuo. Analysis of the Effects of Frequency Dependent Characteristic on the Vibration of Viscoelastic Composite Structure [J]. Journal of Mechanical Engineering, 2018, 54(5): 121-128. |
[7] | JIANG Xin, LIU Yuhong, ZHU Guang, WU Zhiliang, ZHAO Liming. Installation Structure Optimization and Vortex Noise Analysis for Appendages of Deepwater AUV [J]. Journal of Mechanical Engineering, 2015, 51(17): 25-34. |
[8] | DONG Xiaochuan, JIN Miao, YAO Yang, ZHANG Jie. Calculation Model of Critical Preload of Prestressed Composite Deep Beam Based on the Method of Equivalent-beam-length [J]. Journal of Mechanical Engineering, 2015, 51(15): 46-52. |
[9] | WANG Jun;WANG Jiachun;WU Fenghe;ZHOU Yong;BAI Hu. Research of Viscoelastic Damping Anti-vibration Grinding Wheel Spindle with Composite Structure [J]. , 2014, 50(15): 192-197. |
[10] | ZHANG Xiaohui;DUAN Yugang;GE Yanming;LI Dichen. Novel Fabrication Method of Integral Wind Turbine Blades by In-situ UV Curing Automated Fiber Placement [J]. , 2014, 50(11): 37-42. |
[11] | YUAN Jiang;QIU Zixue;SHAO Jianxin;WU Jingya;CHEN Yutian;YU Yunlei;GUO Yonghai. Low Speed Impact Test for Shape Memory Alloy-reinforced Composite Structure Based on Radio Frequency Identification Sensor-tags [J]. , 2012, 48(18): 89-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||