Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (23): 164-177.doi: 10.3901/JME.2022.23.164
Previous Articles Next Articles
JIN Ziang1, HAN Zhenyu1, XIANG Yu1, SUN Shouzheng1,2, FU Hongya1
Received:
2021-12-07
Revised:
2022-05-26
Online:
2022-12-05
Published:
2023-02-08
CLC Number:
JIN Ziang, HAN Zhenyu, XIANG Yu, SUN Shouzheng, FU Hongya. Research Progress on Defect Characteristics and Influencing Factors of Variable Angle Fiber Placement[J]. Journal of Mechanical Engineering, 2022, 58(23): 164-177.
[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007,24(1):1-12.DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12. [2] LIU Y,ZWINGMANN B,SCHLAICH M. Carbon fiber reinforced polymer for cable structures-A review[J]. Polymers,2015,7:2078-2099. [3] DHINAKARAN V,SURENDAR K V,RIYAZ M S H,et al. Review on study of thermosetting and thermoplastic materials in the automated fiber placement process[J]. Materials Today-Proceedings,2020,27:812-815. [4] SUN S Z,HAN Z Y,FU H Y,et al. Defect characteristics and online detection techniques during manufacturing of FRPs using automated fiber placement:A review[J]. Polymers,2020,12(6):1337. [5] BECKWITH S W. Automated fiber placement,robotics,out-of-autoclave thermosets,thermoplastics-technologies making significant advances in aerospace applications[J]. Sampe Journal,2013,49(5):5-5. [6] RAJU B R,SURESHA B,VARADARAJAN Y S,et al. Experimental study on drilling of participate filled glass-epoxy composites manufactured by hand lay-up technique[J]. International Journal of Materials Science,2012,7(2):93-104. [7] DAVALLO M,PASDAR H. Comparison of mechanical properties of glass-polyester composites formed by resin transfer moulding and hand lay-up technique[J]. International Journal of Chemtech Research,2009,1(3):470-475. [8] GU Y,LI M,LI Y,et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica Et Astronautica Sinica,2015,36(8):2773-2797. [9] LUKASZEWICZ D H J A,WARD C,POTTER K D. The engineering aspects of automated prepreg layup:History,present and future[J]. Composites Part B-Engineering,2012,43(3):997-1009. [10] 王显峰,张育耀,赵聪,等. 复合材料自动铺丝设备研究现状[J]. 航空制造技术,2018,61(14):83-90.WANG Xianfeng,ZHANG Yuyao,ZHAO Cong,et al. Research status of composite automatic wire laying equipment[J]. Aeronautical Manufacturing Technology,2018,61(14):83-90. [11] HAN Z Y,SUN S Z,FU H Y,et al. Multi-scale low-entropy method for optimizing the processing parameters during automated fiber placement[J]. Materials,2017,10(9):1024. DOI:10.3390/ma10091024 [12] DENKENA B,SCHMIDT C,VOLTZER K,et al. Thermographic online monitoring system for automated fiber placement processes[J]. Composites Part B-Engineering,2016,97:239-243. [13] AKBARZADEH A H,NIK M A,PASINI D. Vibration responses and suppression of variable stiffness laminates with optimally steered fibers and magneto strictive layers[J]. Composites Part B-Engineering,2016,91:315-326. [14] 邵忠喜,韩振宇,李玥华,等. 纤维铺放设备中丝束增减控制方法及其比较[J]. 航空学报,2011,32(1):164-171.SHAO Zhongxi,HAN Zhenyu,LI Yuehua,et al. Control methods and comparison of tow increase and decrease in fiber placement equipment[J]. Acta Aeronautica et Astronautica Sinica,2011,32(1):164-171. [15] LOZANO G G,TIWARI A,TURNER C,et al. A review on design for manufacture of variable stiffness composite laminates[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2016,230(6):981-992. [16] BALEY C,KERVOELEN A,LAN M,et al. Flax/PP manufacture by automated fiber placement (AFP)[J]. Materials & Design,2016,94:207-213. [17] MILENSKI B,BENSON V. Recent advances in automated fiber placement[J]. Sampe Journal,2014,50(2):7-14. [18] YASSIN K,HOJJATI M. Processing of thermoplastic matrix composites through automated fiber placement and tape laying methods:A review[J]. Journal of Thermoplastic Composite Materials. 2018,31(12):1676-1725. [19] PEREIRA D A,GUIMARAES T A M,RESENDE H B,et al. Numerical and experimental analyses of modal frequency and damping in tow-steered CFRP laminates[J]. Composite Structures,2020,244:112190. [20] LOPES C S,GURDAL Z,CAMANHO P P. Tailoring for strength of composite steered-fiber panels with cutouts[J]. Composites Part A-Applied Science & Manufacturing,2010,41(12):1760-1767. [21] NIK M A,FAYAZBAKHSH K,PASINI D,et al. Surrogate-based multi-objective optimization of a composite laminate with curvilinear fibers[J]. Composite Structures,2012,94(8):2306-2313. [22] HONDA S,NARITA Y. Vibration design of laminated fibrous composite plates with local anisotropy induced by short fibers and curvilinear fibers[J]. Composite Structures,2011,93(2):902-910. [23] FALCO O,LOPES C S,NAYA F,et al. Modelling and simulation of tow-drop effects arising from the manufacturing of steered-fiber composites[J]. Composites Part A-Applied Science & Manufacturing,2017,93:59-71. [24] SETOODEH S,ABDALLA M M,IJSSELMUIDEN S T,et al. Design of variable-stiffness composite panels for maximum buckling load[J]. Composite Structures,2009,87(1):109-117. [25] GHAYOUR M,HOJJATI M,GANESAN R. Effect of tow gaps on impact strength of thin composite laminates made by automated fiber placement:Experimental and semi-analytical approaches[J]. Composite Structures,2020,248,112536. [26] CHEVALIER P L,KASSAPOGLOU C,GURDAL Z. Fatigue behavior of composite laminates with automated fiber placement induced defects-A review[J]. International Journal of Fatigue,2020,140:105775. [27] WOIGK W,HALLETT S R,JONES M I,et al. Experimental investigation of the effect of defects in automated fiber placement produced composite laminates[J]. Composite Structures,2018,201:1004-1017. [28] OROMIEHIE E,PRUSTY B G,COMPSTON P,et al. Automated fiber placement based composite structures:Review on the defects,impacts and inspections techniques[J]. Composite Structures,2019,224:110987. [29] BAKHSHI N,HOJJATI M. Time-dependent wrinkle formation during tow steering in automated fiber placement[J]. Composites Part B-Engineering,2019,165:586-593. [30] RAJAN S,SUTTON M A,WEHBE R,et al. Experimental investigation of prepreg slit tape wrinkling during automated fiber placement process using StereoDIC[J]. Composites Part B-Engineering,2019,160:546-557. [31] CAO Z L,HAN Z Y,FU F Y,et al. Variable-angle trajectory planning for fiber placement:A review[J]. Emerging Materials Research,2017,6(1):74-81. [32] KIM B C,POTTER K,WEAVER P M. Continuous tow shearing for manufacturing variable angle tow composites-ScienceDirect[J]. Composites Part A-Applied Science & Manufacturing,2012,43(8):1347-1356. [33] AKBARZADEH A H,NIK M A,PASINI,D. The role of shear deformation in laminated plates with curvilinear fiber paths and embedded defects[J]. Composite Structures,2014,118:217-227. [34] NIK M A,FAYAZBAKHSH K,PASINI D,et al. A comparative study of metamodeling methods for the design optimization of variable stiffness composites[J]. Composite Structures,2014,107:494-501. [35] WU K C,TATTING B,SMITH B,et al. Design and manufacturing of tow-steered composite shells using fiber placement[C]//50th AIAA/ASME/ASCE/AHS Structures,Structural Dynamics,and Materials Conference,May 4,2009,California. [36] ALLISON B D,EVANS J L. Effect of fiber waviness on the bending behavior of S-glass/epoxy composites[J]. Materials & Design,2012,36:316-322. [37] MUKHOPADHYAY S,JONES M I,HALLETT S R. Tensile failure of laminates containing an embedded wrinkle; numerical and experimental study[J]. Composites Part A-Applied Science & Manufacturing,2015,77(1):219-228. [38] MUKHOPADHYAY S,JONES M I,HALLETT S R. Compressive failure of laminates containing an embedded wrinkle; experimental and numerical study[J]. Composites Part A-Applied Science & Manufacturing,2015,73:132-142. [39] BENDER J J,HALLETT S R,LINDGAARD E. Parametric study of the effect of wrinkle features on the strength of a tapered wind turbine blade sub-structure[J]. Composite Structures,2019,218:120-129. [40] NARTEY M,ZHANG T,GONG B,et al. Understanding the impact of fiber wrinkle architectures on composite laminates through tailored gaps and overlaps[J]. Composites Part B-Engineering,2020,196:108097. [41] BLOM A W,SETOODEH S,HOL J M A M,et al. Design of variable-stiffness conical shells for maximum fundamental eigenfrequency[J]. Computers Structures,2008,86(9):870-878. [42] NIK M A,FAYAZBAKHSH K,PASINI D,et al. Optimization of variable stiffness composites with embedded defects induced by Automated Fiber Placement[J]. Composite Structures,2014,107:160-166. [43] FAYAZBAKHSH K,NIK M A,PASINI D,et al. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by Automated Fiber Placement[J]. Composite Structures,2013,97:245-251. [44] HEINECKE F,BRINK W V D,WILLE T. Assessing the structural response of automated fiber placement composite structureswith gaps and overlaps by means of numerical approaches[C]//20th International Conference on Composite Materials,July 19-24,2015,Copenhagen. [45] LAN M,CARTIE D,DAVIES P,et al. Influence of embedded gap and overlap fiber placement defects on the microstructure and shear and compression properties of carbon-epoxy laminates[J]. Composites Part A-Applied Science and Manufacturing,2016,82:198-207. [46] BELHAJ M,HOJJATI M. Wrinkle formation during steering in automated fiber placement:Modeling and experimental verification[J]. Journal of Rnforced Plastics and Composites,2018,37(6):396-409. [47] MATVEEV M Y,SCHUBEL P J,LONG A C,et al. Understanding the buckling behaviour of steered tows in automated dry fiber placement (ADFP)[J]. Composites Part A-Applied Science and Manufacturing,2016,90:451-456. [48] SMITH R,QURESHI Z,SCAIFE R,et al. Limitations of processing carbon fiber reinforced plastic/polymer material using automated fiber placement technology[J]. Journal of Reinforced Plastics & Composites,2016,35(21):1527-1542. [49] DUBOIS O,LECAM J B,BEAKOU A. Experimental analysis of prepreg tack[J]. Experimental Mechanics,2010,50(5):599-606. [50] ZHAO C,XIAO J,HUANG W,et al. Layup quality evaluation of fiber trajectory based on prepreg tow deformability for automated fiber placement[J]. Journal of Reinforced Plastics and Composites,2016,35(21):1576-1585. [51] 赵聪. 铺丝过程纤维面内屈曲机理及其对构件力学性能影响规律研究[D]. 南京:南京航空航天大学,2017.ZHAO Cong. Formation mechanism of in-plane fiber waviness and its effect on performance of composites in automated fiber placement[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2017. [52] WEHBE R,TATTING B,RAJAN S,et al. Geometrical Modeling of Tow Wrinkles in Automated Fiber Placement[J]. Composite Structures,2020,246:112394. [53] 郑广强,姚锋,周晓芹. 自动铺丝技术及其在A350制造过程中的应用[J]. 航空制造技术,2017,60(16):76-82.ZHENG Guangqiang,YAO Feng,ZHOU Xiaoqin. Automatic wire laying technology and its application in A350 manufacturing process[J]. Aeronautical Manufacturing Technology,2017,60(16):76-82. [54] MARIATTI M,NASIR M,ISMAIL H. Effect of Prepreg geometry on the Prepreg and plain weave composite properties[J]. Journal of Reinforced Plastics & Composites,2002,21(8):711-722. [55] BAKHSHI N,HOJJATI M. An experimental and simulative study on the defects appeared during tow steering in automated fiber placement[J]. Composites Part A-Applied Science & Manufacturing,2018,113:122-131. [56] 方宜武,王显峰,顾善群,等.自动铺丝过程中预浸料的侧向弯曲[J]. 材料工程,2015,43(4):47-52.FANG Yiwu,WANG Xianfeng,GU Shanqun,et al. Lateral bending of prepreg during automated fiber placement[J]. Joural of Materials Engineering,2015,43(4):47-52. [57] 张鹏,孙容磊,连海涛,等. 自动铺带铺层贴合形成机制[J]. 复合材料学报,2014,31(1):40-48.ZHANG Peng,SUN Ronglei,LIAN Haitao,et al. Bonding mechanism of ply during automated tape laying process[J]. Acta Materiae Compositae Sinica,2014,31(1):40-48. [58] GUTOWSKI T G,BONHOMME L. The Mechanics of Prepreg Conformance[J]. Journal of Composite Materials,1988,22(3):204-223. [59] CROSSLEY R J,SCHUBEL P J,WARRIOR N A. The experimental determination of prepreg tack and dynamic stiffness[J]. Composites Part A-Applied Science & Manufacturing,2012,43(3):423-434. [60] CROSSLEY R J,SCHUBEL P J,DEFOCATIIS D S A. Time-temperature equivalence in the tack and dynamic stiffness of polymer prepreg and its application to automated composites manufacturing[J]. Composites Part A-Applied Science & Manufacturing,2013,52:126-133. [61] 文琼华,王显峰,何思敏,等. 温度对预浸料铺放效果的影响[J]. 航空学报,2011,32(9):1740-1745.WEN Qionghua,WANG Xianfeng,HE Simin,et al. Influence of temperature on placement effect of prepreg[J]. Acta Aeronautica et Astronautica Sinica,2011,32(9):1740-1745. [62] 朱黎黎,张佐光,李敏,等. 工艺温度下树脂与纤维的接触角及其粘附作用研究[J]. 复合材料学报,2010,27(5):41-46.ZHU Lili,ZHANG Zuoguang,LI Min,et al. Contact angle and action of adhesion between epoxy resin and fibers at processing temperatures[J]. Acta Materiae Compositae Sinica,2010,27(5):41-46. [63] 陆楠楠,肖军,齐俊伟,等. 面向自动铺放的预浸料动态黏性实验研究[J]. 航空学报,2014,35(1):279-286.LU Nannan,XIAO Jun,QI Junwei,et al. Experimental research on prepreg dynamic tack based on automated placement process[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):279-286. [64] 谢林杉,陈浩然,王浩宇. 面向复杂回转体的T700级碳纤维/双马树脂材料铺放适应性[J]. 航空学报,2020,41(4):294-303.XIE Linshan,CHEN Haoran,WANG Haoyu. Placement suitability of T700 carbon fiber/bismaleimide resin prepreg for complex rotary bodies in AFP[J]. Acta Aeronautica et Astronautica Sinica,2020,41(4):294-303. [65] BEAKOU A,CANO M,LECAM J B,et al. Modelling slit tape buckling during automated prepreg manufacturing:A local approach[J]. Composite Structures,2011,93(10):2628-2635. [66] 蔡立成,彭啸,汪海晋,等. 铺放工艺参数对预浸料丝束曲线铺贴质量的影响[J]. 复合材料学报,2021,38(6):14. CAI Licheng,PENG Xiao,WANG Haijin,et al. Influence on laying process parameters on curve trajectory placement quality of prepreg tow[J]. Acta Materiae Compositae Sinica,2021,38(6):14. [67] 舒展,彭啸,李发飞,等. 基于探针试验的预浸料黏性内聚力模型[J]. 航空学报,2018,39(2):280-292.SHU Zhan,PENG Xiao,LI Fafei,et al. Cohesive zone model for prepreg tack based on probe test[J]. Acta Aeronautica et Astronautica Sinica,2018,39(2):280-292. [68] ZHAO C,WANG B D,XIAO J. Macroscopic characterization of fiber micro-buckling and its influence on composites tensile performance[J]. Journal of Reinforced Plastics and Composites,2017,36(3):196-205. [69] LOPES C S,GURDAL Z,CAMANHO P P. Variable-stiffness composite panels:Buckling and first-ply failure improvements over straight-fiber laminates[J]. Computers & Structures,2008,86(9):897-907. [70] 赵聪,肖军,王显峰,等. 丝束张力对自动铺丝成型工艺的影响[J]. 航空学报,2016,37(4):1384-1392.ZHAO Cong,XIAO Jun,WANG Xianfeng,et al. Effect of tows tension on automated fiber placement process[J]. Acta Aeronautica et Astronautica Sinica,2016,37(4):1384-1392. [71] CEMENSK J,RUDBERG T,HENSCHEID M. Automated in-process inspection system for AFP machines[J]. Sae International Journal of Aerospace,2015,8(2):303-309. [72] ARAO Y,KOYANAGI J,UTSUNOMIYA S,et al. Effect of ply angle misalignment on out-of-plane deformation of symmetrical cross-ply CFRP laminates:Accuracy of the ply angle alignment[J]. Composite Structures,2011,93(4):1225-1230. [73] LI S J,ZHAN L H,CHEN R,et al. Formation,influence mechanism and experimental characterization of composite porosity[J]. Rare Metal Materials and Engineering,2016,45(9):2282-2286. [74] BLOM A W,LOPES C S,KROMWIIK P J,et al. A theoretical model to study the influence of tow-drop areas on the stiffness and strength of variable-stiffness laminates[J]. Journal of Composite Materials,2009,43(5):403-425. [75] 宋桂林,王显峰,赵聪,等. 规则回转体自动铺丝轨迹规划与丝束增减[J]. 航空学报,2020,41(11):383-393.SONG Guilin,WANG Xianfeng,ZHAO Cong,et al. Fiber placement trajectory planning and tows increase or decrease algorithm for revolution body[J]. Acta Aeronautica et Astronautica Sinica,2020,41(11):383-393. [76] FALCO O,MAYUGO J A,LOPES C S,et al. Variable-stiffness composite panels:Defect tolerance under in-plane tensile loading[J]. Composites Part A-Applied Science & Manufacturing,2014,63(18):21-31. [77] KIM B C,WEAVER P M,POTTER K. Manufacturing characteristics of the continuous tow shearing method for manufacturing of variable angle tow composites[J]. Composites Part A-Applied Science and Manufacturing,2014,61:141-151. |
[1] | CHENG Ji, CAO Hongdong, QU Shuguang, ZHENG Kailun, HE Zhubin. Visco-plastic Constitutive Model Based Research on the Modelling of Process Parameters of Hot Gas Forming AA6061 Tubes [J]. Journal of Mechanical Engineering, 2024, 60(16): 108-117. |
[2] | GAO Zhuanni, WANG Leilei, LI Xiang, LIU Zhiqiang, Lü Feiyue, LI Yifan, ZHAN Xiaohong. Effect of Thermal Cycle and Temperature Gradient on Solidification Microstructure of Deposition Layer during 7075 Aluminum Alloy Laser Wire Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(1): 96-118. |
[3] | LIU Weijun, SUO Yingqi, JIANG Xingyu, TIAN Zhiqiang, ZHANG Dong, YANG Guozhe, WANG Hongyue, HAN Qingbing. Low-carbon Modeling and Process Parameter Optimization for Laser Cleaning Process [J]. Journal of Mechanical Engineering, 2023, 59(7): 276-294. |
[4] | KE Yinglin, QU Weiwei, LI Jiangxiong, CHENG Liang, KE Zhenzheng, WU Jianbo, ZHU Jianbin, YANG Di, YANG Qian, CAI Zhijia, WANG Qing, ZHU Weidong, DONG Huiyue, XU Qiang, YU Cijun, WANG Qingtao, NI Zuoxi. Researches on Automated Placement Technologies and Equipment for Carbon Fiber Reinforced Composites:A State-of-the-art Review [J]. Journal of Mechanical Engineering, 2023, 59(20): 401-435. |
[5] | LI Xinyue, LI Jian, ZHANG Jiankang, LIN Panpan, LIN Tiesong, HE Peng. Research on the Process and Mechanism of Reactive Air Brazing of Al2O3Ceramics with AgCu28-B2O3 Filler [J]. Journal of Mechanical Engineering, 2023, 59(10): 48-55. |
[6] | JIANG Xing-yu, LIU Ao, YANG Guo-zhe, LIU Wei-jun, BIAN Hong-you, SUO Ying-qi. Low-carbon Modeling and Process Parameter Optimization in Laser Additive Manufacturing Process [J]. Journal of Mechanical Engineering, 2022, 58(5): 223-238. |
[7] | GUO Fei, WANG Ruijian, ZHANG Yun, ZHOU Huamin, LI Dequn. A Fuzzy Rule-based Network Model for Optimization of Process Parameters in Plastic Injection Molding [J]. Journal of Mechanical Engineering, 2022, 58(20): 206-220. |
[8] | LI Yongtao, YANG Bo, MUHETAER Kelimu. Summary of Methods to Suppress Fluid Pulsation in Hydraulic System [J]. Journal of Mechanical Engineering, 2022, 58(16): 344-359. |
[9] | SONG Shouxu, YU Jiong, WEI Chen, ZHANG Zhixu. Predecisional Remanufacturing Design Method of Rolls Considering Multi-roll Repair and Grinding Relationship [J]. Journal of Mechanical Engineering, 2022, 58(13): 203-212. |
[10] | SUN Shouzheng, ZHAO Yaoxu, WANG Yang, HAN Zhenyu. Design of Robotic Fiber Placement Machine and Process Optimization for Thermoplastic Composites [J]. Journal of Mechanical Engineering, 2021, 57(23): 209-219. |
[11] | CHEN Guang, LIU Jian, GE Jiaying, QIN Xuda, ZOU Yunhe, REN Chengzu. Experimental Study on Ultrasonic Vibration Helical Milling of CFRP Based on Kinematic and Thermal-mechanical Analysis [J]. Journal of Mechanical Engineering, 2021, 57(1): 199-209. |
[12] | LIU Shunuan, XIA Wenqiang, WANG Ning, SONG Ye, LUO Bin, ZHANG Kaifu. Multi-objective Drilling Parameters Optimization Method for CFRP/Ti Stacks [J]. Journal of Mechanical Engineering, 2020, 56(7): 193-203. |
[13] | ZHAO Xiong, ZHENG Lianyu, FAN Wei, YU Lu. Real-time Machining Vibration Data Driven Milling Process Parameters Adaptive Optimization [J]. Journal of Mechanical Engineering, 2020, 56(23): 172-184. |
[14] | XIA Xuhui, YANG Yi, WANG Lei, CAO Jianhua, LIU Xiang. Spraying Method and Optimization of Process Parameters for Remanufacturing Profiled Workpieces Based on Coating Model [J]. Journal of Mechanical Engineering, 2018, 54(13): 215-224. |
[15] | LI Peng, XU Wangye, WANG Shuangfei. Inversion of Defect’s dimension in the Manufacturing Process of Conformal Load-bearing Antenna Structure [J]. Journal of Mechanical Engineering, 2016, 52(10): 158-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||