[1] 陈俊帆,赵生盛,高天,等. 高效单晶硅太阳电池的最新进展及发展趋势[J]. 材料导报,2019,33(1):110-116. CHEN Junfan,ZHAO Shengsheng,GAO Tian,et al. Digh-efficiency monocrystalline silicon solar cells:Development trends and prospects[J]. Materials Reports,2019,33(1):110-116. [2] SHIRAISHI Y,TAKNO K,MATSUBARA J,et al. Growth of silicon crystal with a diameter of 400mm and weight of 400 kg[J]. Journal of Crystal Growth,2001,229:17-21. [3] 沈文杰. 大直径区熔硅单晶生长设备电磁场及温度场的数值模拟与实验研究[D]. 杭州:浙江大学,2013. SHEN Wenjie. Numerical analysis and experimental study on electromagnetic field and temperature field of large-diameter floating zone crystal growing equipment[D]. Hangzhou:Zhejiang University,2013. [4] 张代国,刘向前. 铜及铜合金的搅拌摩擦焊接研究现状[J]. 材料开发与应用,2018,33(6):135-143. ZHANG Daiguo,LIU Xiangqian. Research progress in friction stir welding of copper and copper alloys[J]. Development and Application of Materials,2018,33(6):135-143. [5] SUN Y F,FUJII H. Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper[J]. Materials Science and Engineering A,2010,527:6879-6886. [6] XIE G M,MA Z Y,GENG L. Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper[J]. Scripta Materialia,2007,57(2):73-76. [7] 谢广明. 搅拌摩擦焊接镁及铜合金的微观组织和力学性能[D]. 哈尔滨:哈尔滨工业大学,2008. XIE Guangming. Microstructure and mechanical properties of friction stir welded magnesium and copper alloys[D]. Harbin:Harbin Institute of Technology,2008. [8] 贺地求,易昕,李再华. 紫铜厚板的搅拌摩擦焊接[J]. 焊接学报,2010,31(4):73-76,116-117. HE Diqiu,LI Xin,LI Zaihua. Friction stir welding of thick copper plate[J]. Transactions of the China Welding Institution,2010,31(4):73-76,116-117. [9] 贺地求,邬红光,罗维. 大厚度紫铜搅拌摩擦焊接[J]. 北京科技大学学报,2010,32(10):1302-1305. HE Diqiu,WU Hongguang,LUO Wei. Friction stri welding of copper with large thinkness[J]. Journal of University of Science and Technology Beijing,2010,32(10):1302-1305. [10] 贺地求,马力,孙友庆,等. C18000铜合金搅拌摩擦焊接头微观组织与性能[J]. 焊接学报,2019,40(4):55-60. HE Diqiu,MA Li,SUN Youqing,et al. Microstructure and properties of friction stir welded joints of C18000 copper alloy[J]. Transactions of the China Welding Institution,2019,40(4):55-60. [11] 于明润,赵洪运,蒋智华,等. 铝/黄铜异种金属搅拌摩擦焊搭接接头显微组织与力学性能[J]. 机械工程学报,2019,55(6):39-45. YU Mingrun,ZHAO Hongyun,JIANG Zhihua,et al. Research on microstructure and mechanical properties of friction stir lap welded aluminum/brass dissimilar joint[J]. Journal of Mechanical Engineering,2019,55(6):39-45. [12] SHEN J J,LIU H J,CUI F. Effect of welding speed on microstructure and mechanical properties of friction stir welded copper[J]. Materials & Design,2010,31(8):3937-3942. [13] LIU H J,SHEN J J,HUANG Y X,et al. Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper[J]. Science and Technology of Welding and Joining,2013,14(6):577-583. [14] 许楠,梁庆津,周璐,等. T2纯铜大载荷超低速搅拌摩擦焊接头强韧化机理[J]. 焊接学报,2018,39(12):67-70,135-136. XU Nan,LIANG Qingjin,ZHOU Lu,et al. Strengthening and toughening mechanism of T2 pure copper heavy load ultra-low speed friction stir welding joint[J]. Transactions of the China Welding Institution,2018,39(12):67-70,135-136. [15] XUE P,XIAO B L,ZHANG Q,et al, Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling[J]. Scripta Materialia,2011,64(11):1051-1054. [16] XU Nan,RINTARO U,NORISADA Y,et al. Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling[J]. Materials & Design,2014,56:20-25. [17] AMIRI M,KAZEMINEZHAD M,KOKABI A H. Energy absorption of friction stir welded 1050 aluminum sheets through wedge tearing[J]. Materials and Design,2016,93:216-223. [18] 毛亚芬. 铜及铜合金(H62)搅拌摩擦焊接头组织与性能研究[D]. 长春:长春工业大学,2014. MAO Yafen. Research on microstructure and properties of the welded joints of copper and H62 brass by fiction stir welding[D]. Changchun:Changchun University of Technology,2014. [19] YU Pengfei,WU Chuansong,SHI Lei. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates[J]. Acta Materialia,2021,207:1-18. [20] XUE P,XIAO B L,MA Z Y. High tensile ductility via enhanced strain hardening in ultrafine-grained Cu[J]. Materials Science and Engineering:A,2012,532:106-110. [21] HEIDARZADEH A,SAEID T. Prediction of mechanical properties in friction stir welds of pure copper[J]. Materials & Design(1980-2015),2013,52:1077-1087. [22] 申勇峰,卢磊,陈先华,等. 纳米孪晶纯铜的强度和导电性[J]. 中国科学院院刊,2005,34(5):344-347. SHEN Yongfeng,LU Lei,CHEN Xianhua,et al, Ultrahigh strength and high electrical conductivity of copper with nanometer sizes twins[J]. Bulletin of Chinese Academy of Sciences,2005,34(5):344-347. [23] 李鑫,董焱章,王峰. 铜电导率关于拉伸变形的影响模型[J]. 湖北汽车工业学院学报,2018,32(1):60-63. LI Xin,DONG Yanzhang,WANG Feng. Influence model of tensile deformation on copper conductivity[J]. Journal of Hubei University of Automotive Technology,2018,32(1):60-63. |