[1] WANG Dong,CHEN Yikai,SHEN Changqing,et al. Fully interpretable neural network for locating resonance frequency bands for machine condition monitoring[J]. Mechanical Systems and Signal Processing,2022,168:108673. [2] LEI Yaguo,YANG Bin,JIANG Xinwei,et al. Applications of machine learning to machine fault diagnosis:A review and roadmap[J]. Mechanical Systems and Signal Processing,2020,138:106587. [3] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104. [4] 邵海东,张笑阳,程军圣,等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报,2020,56(9):84-90. SHAO Haidong,ZHANG Xiaoyang,CHENG Junsheng,YANG Yu. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering,2020,56(9):84-90. [5] YANG Qiang,LIU Yang,CHEN Tianjian,et al. Federated machine learning:Concept and applications[J]. ACM Transactions on Intelligent Systems Technology,2019,10(2):1-19. [6] SUN Haifeng,LI Shiqi,YU F R,et al. Towards communication-efficient federated learning in the internet of things with edge computing[J]. IEEE Internet of Things Journal,2020,7(11):11053-11067. [7] WANG Xiaofei,WANG Chenyang,LI Xiuhua,et al. Federated deep reinforcement learning for internet of things with decentralized cooperative edge caching[J]. IEEE Internet of Things Journal,2020,7(10):9441-9455. [8] ZHANG Wei,LI Xiang,MA Hui,et al. Federated learning for machinery fault diagnosis with dynamic validation and self-supervision[J]. Knowledge-Based Systems,2021,213:106679. [9] MCMAHAN H B,MOORE E,RAMAGE D,et al. Communication-efficient learning of deep networks from decentralized data[J]. arXiv preprint arXiv:1602.05629,2016. [10] WANG Haoxiang,LIU Chao,JIANG Dongxiang,et al. Collaborative deep learning framework for fault diagnosis in distributed complex systems[J]. Mechanical Systems and Signal Processing,2021,156:107650. [11] ZHU Hangyu,JIN Yaochu. Multi-objective evolutionary federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,31(4):1310-1322. [12] LI Chuan,ZHANG Shaohui,QIN Yi,et al. A systematic review of deep transfer learning for machinery fault diagnosis[J]. Neurocomputing,2020,407:121-135. [13] 陈祝云,钟琪,黄如意,等. 基于增强迁移卷积神经网络的机械智能故障诊断[J]. 机械工程学报,2021,57(21):96-105. CHEN Zhuyun,ZHONG Qi,HUANG Ruyi,et al. Intelligent fault diagnosis for machinery based on enhanced transfer convolutional neural network[J]. Journal of Mechanical Engineering,2021,57(21):96-105. [14] 雷亚国,杨彬,杜兆钧,等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报,2019,55(7):1-8. LEI Yaguo,YANG Bin,DU Zhaojun,et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering,2019,55(7):1-8. [15] MICHAU G,FINK O. Unsupervised transfer learning for anomaly detection:Application to complementary operating condition transfer[J]. Knowledge-Based Systems,2021,216:106816. [16] KOUW W M,LOOG M. A review of domain adaptation without target labels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(3):766-785. [17] 董绍江,裴雪武,吴文亮,等. 基于多层降噪技术及改进卷积神经网络的滚动轴承故障诊断方法[J]. 机械工程学报,2021,57(1):148-156. DONG Shaojiang,PEI Xuewu,WU Wenliang,et al. Rolling bearing fault diagnosis method based on multilayer noise reduction technology and improved convolutional neural network[J]. Journal of Mechanical Engineering,2021,57(1):148-156. [18] SAEED A,SALIM F D,OZCELEBI T,et al. Federated self-supervised learning of multi-sensor representations for embedded intelligence[J]. IEEE Internet of Things Journal,2021,8(2):1030-1040. [19] ZHANG Wei,LI Xiang. Federated transfer learning for intelligent fault diagnostics using deep adversarial networks with data privacy[J]. IEEE/ASME Transactions on Mechatronics,2022,27(1):430-439. |