[1] 李德源,刘胜祥,张湘伟. 海上风力机塔架在风波联合作用下的动力响应数值分析[J]. 机械工程学报,2009,45(12):46-52. LI Deyuan,LIU Shengxiang,ZHANG Xiangwei. Dynamical response numerical analysis of the offshore wind turbine tower under combined action of wind and wave[J]. Journal of Mechanical Engineering,2009,45(12):46-52. [2] 贺尓铭,熊波,杨佳佳. 基于TMD-HMD的海上浮式风力机主被动综合振动控制[J]. 机械工程学报,2020,56(3):73-79. HE Erming,XIONG Bo,YANG Jiajia. Study on active-passive integrated vibration control of offshore floating wind turbine based on TMD-HMD[J]. Journal of Mechanical Engineering,2020,56(3):73-79. [3] LACKNER M A,ROTEA M A. Passive structural control of offshore wind turbines[J]. Wind Energy,2011,14(3):373-388. [4] 蔡新,张洪建. 基于TMD控制的浮式风力机稳定性研究[J]. 河海大学学报,2021,49(1):70-76. CAI Xin,ZHANG Hongjian. Stability study of floating wind turbine based on TMD control[J]. Journal of Hohai University,2021,49(1):70-76. [5] STEWART G,LACKNER M A. The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads[J]. Engineering Structures,2014,73:54-61. [6] CHEN Da,HUANG Shanshan,HUANG Chenggeng,et al. Passive control of jacket-type offshore wind turbine vibrations by single and multiple tuned mass dampers[J]. Marine Structures,2021,77:102938. [7] LACKNER M A,ROTEA M A. Structural control of floating wind turbines[J]. Mechatronics,2011,21(4):704-719. [8] STEWART G M,LACKNER M A. The effect of actuator dynamics on active structural control of offshore wind turbines[J]. Engineering Structures,2011,33(5):1807-1816. [9] DINH V N,BASU B,NAGARAJAIAH S. Semi-active control of vibrations of spar type floating offshore wind turbines[J]. Smart Struct Syst,2016,18(4):683-705. [10] SUN C. Semi-active control of monopile offshore wind turbines under multi-hazards[J]. Mechanical Systems and Signal Processing,2018,99:285-305. [11] SMITH M C. Synthesis of mechanical networks:the inerter[J]. IEEE Transactions on Automatic Control,2002,47(10):1648-1662. [12] FIRESTONE F A. A new analogy between mechanical and electrical systems[J]. Journal of the Acoustical Society of America,1933,4(3):249-267. [13] 赵志鹏,张瑞甫,陈清军,等. 基于减震比设计方法的惯容减震结构分析[J]. 工程力学,2019,36(S1):125-130. ZHAO Zhipeng,ZHANG Ruifu,CHEN Qingjun,et al. Analysis of structures with inerter systems based on the response mitigation ratio design method[J]. Engineering Mechanics,2019,36(S1):125-130. [14] 杨艺,陈龙,汪若尘,等. 车辆半主动悬架广义天棚理论控制研究[J]. 振动与冲击,2021,40(22):66-74. YANG Yi,CHEN Long,WANG Ruochen,et al. Semi-active suspension control based on the general theory of skyhook control[J]. Journal of Vibration and Shock,2021,40(22):66-74. [15] 沈钰杰,陈龙,刘雁玲,等. 基于非线性流体惯容的车辆悬架隔振性能分析[J]. 汽车工程,2017,39(7):789-795. SHEN Yujie,CHEN Long,LIU Yanling,et al. Analysis of Vibration isolation performance of vehicle suspension with nonlinear fluid inerter[J]. Automotive Engineering,2017,39(7):789-795. [16] HU Yinlong,WANG Jianing,CHEN M Z Q,et al. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control[J]. Engineering Structures,2018,177:198-209. [17] ZHANG Zili,HØEG C. Inerter-enhanced tuned mass damper for vibration damping of floating offshore wind turbines[J]. Ocean Engineering,2021,223:108663. [18] LI Yiyuan,PARK S,JIANG J Z,et al. Vibration suppression for monopile and spar-buoy offshore wind turbines using the structure-immittance approach[J]. Wind Energy,2020,23(10):1966-1985. [19] WANG Fuchen,CHAN H A. Vehicle suspensions with a mechatronic network strut[J]. Vehicle System Dynamics,2011,49(5):811-830. [20] NING Donghong,DU Haiping,ZHANG Nong,et al. Controllable electrically interconnected suspension system for improving vehicle vibration performance[J]. IEEE/ASME Transactions on Mechatronics,2020,25(2):859-871. [21] SHEN Yujie,HUA Jie,WU Bin,et al. Optimal design of the vehicle mechatronic ISD suspension system using the structure-immittance approach[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2022,236(4):512-521. [22] NING Donghong,SUN Shuaishuai,DU Haiping,et al. Vibration control of an energy regenerative seat suspension with variable external resistance[J]. Mechanical Systems and Signal Processing,2018,106:94-113. [23] YUAN Hua,LI Yuan,JIANG J Z,et al. A design methodology for passive mechatronic vibration absorbers[J]. Mechanism and Machine Theory,2022,167:104523. [24] JONKMAN J M. Dynamics modeling and loads analysis of an offshore floating wind turbine[R]. NREL/TP-500-41958,2007. [25] YANG Jiajia,HE Erming,HU Yaqi. Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform[J]. Applied Ocean Research,2019,83:21-29. [26] LI Zengmei,CHEN M Z Q,HU Yinlong. Structural control of floating offshore wind turbines with inerter-based low-order mechanical networks[C]//Chinese Control Conference (CCC),July 26-28,2021,Shanghai,China. Shanghai:IEEE,2021:105-111. [27] ZHANG S Y,JIANG J Z,NEILD S A. Passive vibration control:a structure-immittance approach[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2017,473(2201):20170011. [28] HAYMAN G. MLife theory manual for version 1.00[R]. NREL/TP-XXXXX,2012. |