[1] LI C,LI G,JIANG G,et al. Surface EMG data aggregation processing for intelligent prosthetic action recognition[J]. Neural Computing and Applications,2018,32(22):16795-16806. [2] BENSMAIA S,TYLER D,MICERA S. Restoration of sensory information via bionic hands[J]. Nature Biomedical Engineering,2020:1-13. [3] OSBORN L E,DING K,HAYS M A,et al. Sensory stimulation enhances phantom limb perception and movement decoding[J]. Journal of Neural Engineering,2020,17(5):056006. [4] JABBAN L,DUPAN S,ZHANG D,et al. Sensory feedback for upper-limb prostheses:Opportunities and Barriers[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2022,30:738-747. [5] BECERRA-FAJARDO L,KROB M,MINGUILLON J,et al. Floating EMG sensors and stimulators wirelessly powered and operated by volume conduction for networked neuroprosthetics[J]. Journal of NeuroEngineering and Rehabilitation,BioMed Central,2022,19(1):1-19. [6] CHRISTIE B,OSBORN L E,MCMULLEN D,et al. Perceived timing of cutaneous vibration and intracortical microstimulation of human somatosensory cortex[J]. Brain Stimulation,2022,15(3):881-888. [7] HAO M,CHOU C,ZHANG J,et al. Restoring finger-specific sensory feedback for transradial amputees via non-invasive evoked tactile sensation[J]. IEEE Open Journal of Engineering in Medicine and Biology,2020,1:98-107. [8] VARGAS L,HUANG H,ZHU Y,et al. Object recognition via evoked sensory feedback during control of a prosthetic hand[J]. IEEE Robotics and Automation Letters,2022,7(1):207-214. [9] WANG H,CHAI G,SHENG X,et al. A programmable,multichannel,miniature stimulator for electrotactile feedback of neural hand prostheses[C]//IEEE/EMBS Conference on Neural Engineering,2021:1026-1029. [10] GRAUPE D,CLINE W. Functional separation of EMG signal via ARMA identification methods for prosthesis control purposes[J]. IEEE Transactions on Systems,1975,5(2):252-259. [11] CONNOLLY C. Prosthetic hands from touch bionics[J]. Industrial Robot,2008,35(4):290-293. [12] MULVEY M,FAWKNER H,RADFORD H,et al. Perceptual embodiment of prosthetic limbs by transcutaneous electrical nerve stimulation[J]. Neuromodulation:Technology at the Neural Interface,2012,15(1):42-47. [13] KATO R,YOKOI H,HERNANDEZ A,et al. Mutual adaptation among man and machine by using f-MRI analysis[J]. Robotics and Autonomous Systems,2009,57(2):161-166. [14] PATEL G,DOSEN S,CASTELLINI C,et al. Multichannel electrotactile feedback for simultaneous and proportional myoelectric control[J]. Journal of Neural Engineering,2016,13(5):056015. [15] STRBAC M,ISAKOVIC M,BELIC M,et al. Short- and long-term learning of feedforward control of a myoelectric prosthesis with sensory feedback by amputees[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2017,25(11):2133-2145. [16] OSBORN L E,DRAGOMIR A,BETTHAUSER J,et al. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain[J]. Science Robotics,2018,3(19). [17] 宋爱国,吴常铖. 具有自主学习能力和力触觉感知反馈能力的智能肌电假手[J]. 科技纵览,2016,(11):69-71. SONG Aiguo,WU Changcheng. Intelligent EMG artificial hand with autonomous learning ability and force tactile perception feedback ability[J]. IEEE Spectrum,2016,(11):69-71. [18] 胡旭晖,石珂,祝佳航,等. 基于力触觉感知与电刺激反馈的灵巧假手[J]. 机械工程学报,2019,55(11):10-18. HU Xuhui,SHI Ke,ZHU Jiahang,et al. Dexterous prosthetic hand with force perception and electrical stimulation[J]. Journal of Mechanical Engineering,2019,55(11):10-18. [19] YIMENG G,SHUAN Y,KAIHUA Z,et al. Mediating different-diameter Aβ nerve fibers using a biomimetic 3D TENS computational model[J]. Journal of Neuroscience Methods,Elsevier,2020,346:108891. [20] 姜力,杨斌,黄琦,等. 智能假肢手的生机电集成[J]. 机器人,2017,39(4):387-394. JIANG Li,YANG Bin,HUANG Qi,et al. Biomechatronic integration of intelligent prosthetic hand[J]. Robot,2017,39(4):387-394. [21] MARASCO P,HEBERT J,SENSINGER J,et al. Illusory movement perception improves motor control for prosthetic hands[J]. Science Translational Medicine,2018,10(432). [22] PAGE D M,GEORGE J A,KLUGER D T,et al. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation[J]. Frontiers in Human Neuroscience,2018,12. [23] MENDEZ V,IBERITE F,SHOKUR S,et al. Current solutions and future trends for robotic prosthetic hands[J]. Annual Review of Control Robotics and Autonomous Systems,2021,4(1):595-627. [24] ISKAROUS M,THAKOR N. E-Skins:biomimetic sensing and encoding for upper limb prostheses[J]. Proceedings of the IEEE,2019,107(10):2052-2064. [25] OSBORN L,NGUYEN H,BETTHAUSER J,et al. Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs[C]//International Conference of the IEEE Engineering in Medicine & Biology Society. IEEE,2016:4622-4625. [26] SHEN Z,ZHU X,MAJIDI C,et al. Cutaneous ionogel mechanoreceptors for soft machines,physiological sensing,and amputee prostheses[J]. Advanced Materials,2021,33(38). [27] SVENSSON P,WIJK U,BJRKMAN A,et al. A review of invasive and non-invasive sensory feedback in upper limb prostheses[J]. Expert Review of Medical Devices,2017,14(6):439-447. [28] KACZMAREK K,WEBSTER J,BACH-Y-RITA P,et al. Electrotactile and vibrotactile displays for sensory substitution systems[J]. IEEE Transactions on Biomedical Engineering,1991,38(1):1-16. [29] ARAKERI T,HASSE B,FUGLEVAND A. Object discrimination using electrotactile feedback[J]. Journal of Neural Engineering,2018,15(4):12-25. [30] KAJIMOTO H,KAWAKAMI N,MAEDA T,et al. Electro-tactile display with tactile primary color approach[C]//Proceedings of International Conference on Intelligent Robots and Systems. Sendai,Japan. 2004. [31] HIRATA T,NAKAMURA T,KATO R,et al. Development of mobile controller for EMG prosthetic hand with tactile feedback[C]//2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics:Institute of Electrical and Electronics Engineers. IEEE,2011:110-115. [32] PATRICIU A, YOSHIDA K, STRUIJK J, et al. Current density imaging and electrically induced skin burns under surface electrodes[J]. IEEE Transactions on Biomedical Engineering,2005,52(12):2024-2031. [33] AKHTAR A,SOMBECK J,BOYCE B,et al. Controlling sensation intensity for electrotactile stimulation in human-machine interfaces[J]. Science Robotics,2018,3(17):eaap9770. [34] JIANG L,HUANG Q,ZHAO J,et al. Noise cancellation for electrotactile sensory feedback of myoelectric forearm prostheses[C]//2014 IEEE International Conference on Information and Automation (ICIA). IEEE,2014. [35] CONZELMAN J,ELLIS H,O'BRIEN C. Prosthetic device sensory attachment:US,1952265872[P]. 1953-10-27. [36] MANN RW. Kinesthetic sensing for the EMG controlled "Boston Arm"[J]. IEEE Transactions on Man-Machine Systems,1970,11(1):110-115. [37] PYLATIUK C,KARGOV A,SCHULZ S. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands[J]. JPO Journal of Prosthetics and Orthotics,2006,18(2):57-61. [38] 李楠,刘波,霍宏,等. 基于肌力信号与电刺激感觉反馈的多自由度机械手人机交互控制[J]. 机器人,2015,37(6):718-724. LI Nan,LIU Bo,HUO Hong,et al. Human-machine interaction control based on force myograph and electrical stimulation sensory feedback for multi-dof robotic hand[J]. Robot,2015,37(6):718-724. [39] ANTFOLK C,BJRKMAN A,FRANK S O,et al. Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin[J]. Journal of rehabilitation medicine:official journal of the UEMS European Board of Physical and Rehabilitation Medicine,2012,44(8):702-707. [40] MOAED A. ABD,JOSEPH INGICCO,DOUGLAS T. H,et al. Multichannel haptic feedback unlocks prosthetic hand dexterity[J]. Scientific Reports,Nature Publishing Group,2022,12(1):1-17. [41] CASINI S,MORVIDONI M,BIANCHI M,et al. Design and realization of the CUFF-clenching upper-limb force feedback wearable device for distributed mechano-tactile stimulation of normal and tangential skin forces[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. IEEE,2015. [42] PANARESE A,EDIN B,VECCHI F,et al. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17(6):560-567. [43] PYLATIUK C,KARGOV A,SCHULZ S. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands[J]. Jpo Journal of Prosthetics & Orthotics,2006,18(2):57-61. [44] PATEL G K,DOSEN S,CASTELLINI C,et al. Multichannel electrotactile feedback for simultaneous and proportional myoelectric control[J]. Journal of neural engineering,2016,13(5):056015.1-056015.13. [45] SAUNDERS I,VIJAYAKUMAR S. The role of feed-forward and feedback processes for closed-loop prosthesis control[J]. Journal of Neuroengineering & Rehabilitation,2011,8(1):60-60. [46] AJOUDANI A,GODFREY S B,BIANCHI M,et al. Exploring teleimpedance and tactile feedback for intuitive control of the Pisa/IIT SoftHand[J]. IEEE Transactions on Haptics,2014,7(2):203-215. [47] JIMENEZ M,FISHEL J. Evaluation of force,vibration and thermal tactile feedback in prosthetic limbs[C]//IEEE Haptics Symposium,2014:437-441. [48] STEPP C,MATSUOKA Y. Relative to direct haptic feedback,remote vibrotactile feedback improves but slows object manipulation[C]//IEEE Engineering in Medicine and Biology,2010:2089-2092. [49] RASPOPOVIC S,VALLE G,PETRINI F. Sensory feedback for limb prostheses in amputees[J]. Nature Materials,2021,20(7):925-939. [50] GEORGE J,KLUGER D,DAVIS T,et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand[J]. Science Robotics,2019,4(32):2352-2363. [51] BJORKMAN A,WIJK U,ANTFOLK C,et al. Sensory qualities of the phantom hand map in the residual forearm of amputees[J]. Journal of Rehabilitation Medicine,2016,48(4):365-370. [52] DIMANTE D,LOGINA I,SINISI M,et al. Sensory feedback in upper limb prostheses[J]. Proceedings of the Latvian Academy of Sciences,2020,74(5):308-317. [53] CHAI G,SUI X,LI S,et al. Characterization of evoked tactile sensation in forearm amputees with transcutaneous electrical nerve stimulation[J]. Journal of Neural Engineering,2015,12(6):066002. [54] MORRIS M,DY C,BOYER M,et al. Targeted muscle reinnervation and the volar forearm filet flap for forequarter amputation:description of operative technique[J]. Journal of Hand Surgery Global Online,2020,2(5):306-311. [55] D'ANNA E,VALLE G,MAZZONI A,et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback[J]. Science Robotics,2019,4(27). [56] WODLINGER B, DOWNEY J, TYLER-KABARA E, et al. Ten-dimensional anthropomorphic arm control in a human brain-machine interface:difficulties, solutions, and limitations[J]. Journal of Neural Engineering, 2015, 12(1). [57] FRANCESCA C,LISA C,RINALDO S,et al. Literature review on needs of upper limb prosthesis users[J]. Frontiers in Neuroscience,2016,10:209. [58] SCHOFIELD J,EVANS K,CAREY J,et al. Applications of sensory feedback in motorized upper extremity prosthesis:a review[J]. Expert Review of Medical Devices,2014,11(5):499-511. [59] ANTFOLK C,D' ALONZO M,CONTROZZI M,et al. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees:vibrotactile versus mechanotactile sensory feedback[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2013,21(1):112-120. [60] VALLE G,PETRINI F,STRAUSS I,et al. Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses[J]. Scientific Reports,Nature Publishing Group,2018,8(1):16666. [61] GENG B,DONG J,JENSEN W,et al. Psychophysical svaluation of subdermal electrical stimulation in relation to prosthesis sensory feedback[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2018,26(3):709-715. [62] GUÉMANN M,HALGAND C,BASTIER A,et al. Sensory substitution of elbow proprioception to improve myoelectric control of upper limb prosthesis:experiment on healthy subjects and amputees[J]. Journal of NeuroEngineering and Rehabilitation,2022,19(1):59. [63] BLUSTEIN D,WILSON A,SENSINGER J. Assessing the quality of supplementary sensory feedback using the crossmodal congruency task[J]. Scientific Reports,2018,8(1):6203. [64] SU S,CHAI G,MENG J,et al. Towards optimizing the non-invasive sensory feedback interfaces in a neural prosthetic control[J]. Journal of Neural Engineering,2022,19(1):16-28. [65] WANG Y,FANG P,TANG X,et al. Effective evaluation of finger sensation evoking by non-invasive stimulation for sensory function recovery in transradial amputees[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2022,30:519-528. |