[1] CHASLES M. Note sur le propriétés générales du systéme de deux corps semblables entr'eux et places d'une maniére quelconque dans l'espace; et sur le déplacement fini ou infiniment petis d'un corps solide libre[J]. Bulletin des Sciences Mathématiques,1830,14(1):321-326. CHASLES M. Note on the general properties of the system of two bodies similar to each other and placed in some way in space; and on the finite or infinitely small displacement of a free solid body[J]. Bulletin des Sciences Mathématiques,1830,14(1):321-326. [2] BOTTEMA O,ROTH B. Theoretical kinematics[M]. Amsterdam:North Holland Publishing Company,1979. [3] MCCARTHY J M. An introduction to theoretical kinematics[M]. Cambridge:The MIT Press,1990. [4] SELIG J M. Geometric fundamentals of robotics[M]. 2nd ed. New York:Springer,2005. [5] DAI J S. An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist[J]. Mechanism and Machine Theory,2006,41(1):41-52. [6] 戴建生. 机构学与机器人学的几何基础与旋量代数[M]. 北京:高等教育出版社,2014. DAI Jiansheng. Geometrical foundations and screw algebra for mechanisms and robotics[M]. Beijing:Higher Education Press,2014. [7] 张英. 机器人机构运动学[M]. 北京:北京邮电大学出版社,2020. ZHANG Ying. Kinematics of robot mechanisms[M]. Beijing:BUPT Press,2020. [8] BONEV I A,ZLATANOV D,GOSSELIN C M. Advantages of the modified Euler angles in the design and control of PKMs[C]//Parallel Kinematic Machines International Conference,Chemnitz,Germany,2002,171-188. [9] 刘辛军,吴超,汪劲松,等.[PP]S类并联机器人机构姿态描述方法[J]. 机械工程学报,2008,44(10):19-23. LIU Xinjun,WU Chao,WANG Jinsong. Attitude description method of[PP]S parallel robot mechanism[J]. Journal of Mechanical Engineering,2008,44(10):19-23. [10] YANG A T. Displacement analysis of spatial five link mechanism using 3×3 matrices with dual number elements[J]. ASME Journal of Engineering for Industry,1969,91(1):152-156. [11] 廖启征. 空间机构(无球面副)位移分析的酉交矩阵法[D]. 北京:北京航空航天大学,1987. LIAO Qizheng. Displacement analysis of spatial mechanisms (without spherical pair) based on the unitary matrix[D]. Beijing:Beihang University,1987. [12] CLIFFORD W K. Preliminary sketch of bi-quaternions[J]. Proceedings of the London Mathematical Society,1871,s1-4(1):381-395. [13] YANG A T,FREUDENSTEIN F. Application of dual-number quaternion algebra to the analysis of spatial mechanism[J]. ASME Journal of Applied Mechanisms,1964,86(2):300-309. [14] THOMAS F. Approaching dual quaternions from matrix algebra[J]. IEEE Transactions on Robotics,2017,30(5):1037-1048. [15] PURWAR A,GE Q J. Polar decomposition of unit dual quaternions[J]. Journal of Mechanism and Robotics,2013,5(3):0310011-0310016. [16] ETZEL K R,MCCARTHY J M. A metric for spatial displacement using biquaternions on SO(4)[C]//IEEE International Conference on Robotics and Automation,April 22-28,1996,Minneapolis,Minnesota,USA,1996,3185-3190. [17] GE Q J. On the matrix realization of the theory of bi-quaternions[J]. Journal of Mechanical Design,1998,120(3):404-407. [18] 廖启征. 机构运动学建模的倍四元数法[J]. 北京工业大学学报,2015,41(11):1611-1619. LIAO Qizheng. Kinematic modeling of mechanisms using double quaternion[J]. Journal of Beijing University of Technology,2015,41(11):1611-1619. [19] HUSTY M L,PFURNER M,SCHROKER H P,et al. Algebraic methods in mechanism analysis and synthesis[J]. Robotica,2007,25(6):661-676. [20] ROONEY J. A survey of representations of spatial rotation about a fixed point[J]. Environment Planning B,1977,4(2):185-210. [21] ROONEY J. A comparison of representations of general spatial screw displacement[J]. Environment Planning B,1978,5(1):45-88. [22] FUNDA J,PAUL R P. A computational analysis of screw transformations in robotics[J]. IEEE Transactions on Robotics and Automation,1990,6(3):348-356. [23] FUNDA J,TAYLOR R H,PAUL R P. On homogeneous transforms,quaternions,and computational efficiency[J]. IEEE Transactions on Robotics and Automation,1990,6(3):382-388. [24] HESTENES D,SOBCZYK G. Clifford algebra to geometric calculus[M]. Boston:D. Reidel Publishing Company,1984. [25] LI H,HESTENES D,ROCKWOOD A. Generalized homogeneous coordinates for computational geometry[M]. Berlin Heidelberg:Springer,2001. [26] YAGLOM I M. Complex numbers in geometry[M]. New York:Academic Press,1968. [27] MCCARTH J M. The generalization of line trajectories in spatial kinematics to trajectories of great circles on a hyper-sphere[J]. Journal of Mechanical Design,1986,108(1):60-64. |