Research on the Novel Method for Inverse Kinematics Analysis of Spatial 6R Serial Manipulators
ZHANG Ying1, HUANG Qineng1, LIAO Qizheng1, YANG Xu2, WEI Shimin1
1. School of Modern Post (School of Automation), Beijing University of Posts and Telecommunications, Beijing 100876; 2. Beijing Institute of Spacecraft System Engineering, Beijing 100094
ZHANG Ying, HUANG Qineng, LIAO Qizheng, YANG Xu, WEI Shimin. Research on the Novel Method for Inverse Kinematics Analysis of Spatial 6R Serial Manipulators[J]. Journal of Mechanical Engineering, 2022, 58(19): 1-11.
[1] 冷舒,吴克,居鹤华. 机械臂运动学建模及解算方法综述[J]. 宇航学报,2019,40(11):1262-1273. LENG Shu,WU Ke,JU Hehua. A survey of kinematics modeling and solving methods of manipulator[J]. Journal of Astronautics,2009,40(11):1262-1273. [2] DUFFY J,CRANE C. A displacement analysis of the general spatial 7R mechanism[J]. Mechanisms and Machine Theory,1980(15):153- 169. [3] TSAI L W,MORGAN A. Solving the kinematics of the most general six and five-degree-of-freedom manipulators by continuation methods[J]. Mechanism and Machine Theory,1985,107(2):189-200. [4] PRIMROSE E J F. On the input-output equation of the general 7R mechanism[J]. Mechanism and Machine Theory,1986,21(5):509-510. [5] RAGHAVAN M,ROTH B. Inverse kinematics of the general 6R manipulator and related linkages[J]. Journal of Mechanical Design,1993,115(3):502-508 [6] MANOCHA D,CANNY J F. Efficient inverse kinematics for general 6R manipulators[J]. IEEE Transaction on Robotics and Automation,1994,5(10):648-657. [7] 廖启征,梁崇高,张启先. 空间7R机构位移分析的新研究[J]. 机械工程学报,1986,22(3):1-9. LIAO Qizheng,LIANG Chonggao,ZHANG Qixian. A novel approach to the displacement analysis of general spatial 7R mechanism[J]. Journal of Mechanical Engineering,1986,22(3):1-9. [8] LEE H Y,LIANG C G. Displacement analysis of the general spatial 7-link 7R mechanism[J]. Mechanisms and Machine Theory,1988,23(3):219-226. [9] KONLI D,OSVATIC M. Inverse kinematics of general 6R and 5R,P serial manipulators[J]. Journal of Mechanical Design,1993,115(4):922-931. [10] 刘松国,朱世强,王宣银. 基于矩阵分解的一般6R机器人实时高精度逆运动学算法[J]. 机械工程学报,2008,44(11):304-309. LIU Songguo,ZHU Shiqiang,WANG Xuanyin. Real time high precision inverse kinematics algorithm for general 6R robot based on matrix decomposition[J]. Journal of Mechanical Engineering,2008,44(11):304-309. [11] QIAO S,LIAO Q,WEI S,et al. Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions[J]. Mechanism and Machine Theory,2010,45(2):193-199. [12] GAN D,LIAO Q,WEI S,et al. Dual quaternion-based inverse kinematics of the general spatial 7R mechanism[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2008,222(8):1593-1598. [13] 倪振松,廖启征,魏世民,等. 空间6R机器人位置反解的对偶四元数法[J]. 机械工程学报,2009,45(11):25-29. NI Zhensong,LIAO Qizheng,WEI Shimin,et al. Dual quaternion method for inverse position solution of space 6R robot[J]. Journal of Mechanical Engineering,2009,45(11):25-29. [14] 廖启征,倪振松,李洪波,等. 四元数的复数形式及其在6R机器人反解中的应用[J]. 系统科学与数学,2009,24(9):1286-1296. LIAO Qizheng,NI Zhensong,LI Hongbo,et al. An application of dual quaternions on the reverse displacement analysis of 6R robots[J]. Journal of System Science and Mathematics,2009,24(9):1286-1296. [15] DENAVIT J,HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Journal of Applied mechanics,1995,22(77):215-221. [16] PAUL R P. Robot manipulators:Mathematics,programming and control:The computer control of robot manipulators[M]. Cambridge:The MIT Press,1981. [17] MURRAY R M,LI Z,SASTRY S S,et al. A mathematical introduction to robotic manipulation[M]. Boca Raton:CRC Press,1994. [18] PARK F C. Computational aspects of the product-of-exponentials formula for robot kinematics[J]. IEEE Transactions on Automatic Control,1994,39(3):643-647. [19] YANG A T. Displacement analysis of spatial five link mechanism using 3×3 matrices with dual number elements[J]. ASME Journal of Engineering for Industry,1969,91(1):152-156. [20] 廖启征. 空间机构(无球面副)位移分析的酉交矩阵法[D]. 北京:北京航空航天大学,1987. LIAO Qizheng. Displacement analysis of spatial mechanisms without spherical pairs based on unitary matrix[D]. Beijing:Beijing University of Aeronautics and Astronautics,1987. [21] HUSTY M L,PFURNER M,SCHROCKER H P. A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator[J]. Mechanism and Machine Theory,2007,42(1):66-81. [22] FU Z,YANG W,YANG Z. Solution of inverse kinematics for 6R robot manipulators with offset wrist based on geometric algebra[J]. Journal of Mechanisms and Robotics,2013,5(3):310081-310087. [23] 张英. 机器人机构运动学[M]. 北京:北京邮电大学出版社,2020. ZHANG Ying. Kinematics of robot mechanisms[M]. Beijing:BUPT Press,2020. [24] GE Q J. On the matrix realization of the theory of bi-quaternions[J]. Journal of Mechanical Design,1998,120(3):404-407. [25] MCCARTH J M. The generalization of line trajectories in spatial kinematics to trajectories of great circles on a hyper-Sphere[J]. ASME Journal of Mechanisms,Transmission and Automation,1986,108(1):60-64. [26] PURWAR A,GE Q J. Polar decomposition of unit dual quaternions[J]. Journal of Mechanism and Robotics,2013,5(3):0310011-0310016. [27] CLIFFORD W K. Preliminary sketch of bi-quaternions[J]. Proc. London Math Society,1873,4(64/65):381-395. [28] 张英,黄起能,廖启征,等. 空间刚体变换的倍矩阵描述方法[J]. 机械工程学报,2022,58(13):89-100. ZHANG Ying,HUANG Qineng,LIAO Qizheng,et al. Double matrix representation method for the spatial rigid body transformation[J]. Journal of Mechanical Engineering,2022,58(13):89-100. [29] 黄起能. 基于倍矢量和倍矩阵的机构运动学分析研 究[D]. 北京:北京邮电大学,2021. HUANG Qineng. Kinematic analysis of mechanisms based on the double vector and the double matrix[D]. Beijing:Beijing University of Posts and Telecommunications,2021.