[1] XIE Q, LU D, DU K, et al. Aircraft skin rivet detection based on 3D point cloud via multiple structures fitting[J]. Computer-Aided Design, 2019, 120:102805. [2] LI B, WANG X, YANG H, et al. Aircraft rivets defect recognition method based on magneto-optical images[C]//International Conference on Machine Vision and Human-machine Interface, April 24-25, 2010, Kaifeng, China:IEEE, 2010:788-791. [3] 陆岩.基于微分边缘检测的自动化制孔基准孔快速识别定位技术[D].杭州:浙江大学, 2017.CHEN Yan. Rapid identification and location technology of reference hole in automatic drilling based on differential edge detection[D]. Hangzhou:Zhejiang University, 2017. [4] 陈璐,关立文.基于改进Zernike矩的亚像素钻铆圆孔检测方法[J].清华大学学报, 2019, 59(6):438-444. CHEN Lu, GUAN Liwen. Subpixel drilling and riveting circular hole detection method based on an improved Zernike moment[J]. Journal of Tsinghua University, 2019, 59(6):438-444. [5] 杨爽.基于深度学习的复合材料圆孔检测方法研究[D].杭州:浙江大学, 2019. YANG Shuang. Deep learning based approach for circular hole detection on composite parts[D]. Hangzhou:Zhejiang University, 2019. [6] 谭小群,唐婧仪,于薇薇,等.基于线激光扫描和图像处理的基准孔检测技术研究[J].现代制造工程, 2019(4):115-121. TAN Xiaoqun, TANG Jingyi, YU Weiwei, et al. Research on reference hole detection technology based on line laser scanning and image processing[J]. Modern Manufacturing Engineering, 2019(4):115-121. [7] 庄志炜,田威,李波,等.基于模板匹配的孔位与法矢检测算法[J].计算机集成制造系统, 2021, 27(12):3484-3493. ZHUANG Zhiwei, TIAN Wei, LI Bo, et al. Detection algorithm of hole position and normal based on template matching[J]. Computer Integrated Manufacturing Systems, 2021, 27(12):3484-3493. [8] 石循磊,杜坤鹏,张继文,等.基于线激光扫描的飞机表面锪窝孔参数提取方法[J].机械工程学报, 2020, 56(8):166-172. SHI Xunlei, DU Kunpeng, ZHANG Jiwen, et al. Method for extracting hole parameters of aircraft surface based on linear laser scanning[J]. Journal of Mechanical Engineering, 2020, 56(8):166-172. [9] BARBER C B, DOBKIN D P, HUHDANPAA H. The quickhull algorithm for convex hulls[J]. ACM Transactions on Mathematical Software (TOMS), 1996, 22(4):469-483. [10] AKKIRAJU N, EDELSBRUNNER H, FACELLO M, et al. Alpha shapes:Definition and software[C]//Proceedings of the 1st International Computational Geometry Software Workshop. 1995, 63:66. [11] KETTNER L, NAHER S, GOODMAN J E, et al. Two computational geometry libraries:LEDA and CGAL[C]//Handbook of Discrete and Computational Geometry. Florida:Chapman&Hall/CRC, 2004:1435-1463. [12] OZTIRELI A C, GUENNEBAUD G, GROSS M. Feature preserving point set surfaces based on non-linear kernel regression[J]. Computer Graphics Forum, 2009, 28(2):493-501. [13] BAZAZIAN D, CASAS J R, RUIZ-HIDALGO J. Fast and robust edge extraction in unorganized point clouds[C]//International Conference on Digital Image Computing:Techniques and Applications (DICTA), January 07, 2015, Adelaide, Australia:IEEE, 2015:1-8. [14] MINEO C, PIERCE S G, SUMMAN R. Novel algorithms for 3D surface point cloud boundary detection and edge reconstruction[J]. Journal of Computational Design and Engineering, 2019, 6(1):81-91. [15] RUSU R B, COUSINS S. 3d is here:Point cloud library (pcl)[C]//2011 IEEE International Conference on Robotics and Automation, May 09, 2011, Shanghai, China:IEEE, 2011:1-4. [16] GERSHO A, GRAY R M. Vector quantization and signal compression[M]. Berlin/Heidelberg:Springer Science&Business Media, 2012. [17] BELTON D, LICHTI D D. Classification and segmentation of terrestrial laser scanner point clouds using local variance information[J]. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 2006, 36(5):44-49. [18] YU L, LI X, FU C W, et al. EC-Net:An edge-aware point set consolidation network[C]//Proceedings of the European Conference on Computer Vision (ECCV), September 8-14, 2018, Munich, Germany:Springer, 2018:386-402. [19] WANG X, XU Y, XU K, et al. Pie-net:Parametric inference of point cloud edges[J]. Advances in Neural Information Processing Systems, 2020, 33:20167-20178. [20] LOIZOU M, AVERKIOU M, KALOGERAKIS E. Learning part boundaries from 3D point clouds[J]. Computer Graphics Forum., 2020, 39(5):183-195. [21] CHERNOV N. Circular and linear regression:Fitting circles and lines by least squares[M]. Florida:CRC Press, 2010. [22] CALAFIORE G. Approximation of n-dimensional data using spherical and ellipsoidal primitives[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2002, 32(2):269-278. [23] GUEVARA I L D, MUOZ J, COZAR O D D, et al. Robust fitting of circle arcs[J]. Journal of Mathematical Imaging and Vision, 2011, 40(2):147-161. [24] ABDUL-RAHMAN H, CHERNOV N. Fast and numerically stable circle fit[J]. Journal of Mathematical Imaging and Vision, 2014, 49(2):289-295. [25] CHERNOV N, LESORT C. Least squares fitting of circles[J]. Journal of Mathematical Imaging and Vision, 2005, 23(3):239-252. [26] AL-SHARADQAH A. Further statistical analysis of circle fitting[J]. Electronic Journal of Statistics, 2014, 8(2):2741-2778. [27] KASA I. A circle fitting procedure and its error analysis[J]. IEEE Transactions on Instrumentation and Measurement, 1976(1):8-14. [28] AL-SHARADQAH A, CHERNOV N. Error analysis for circle fitting algorithms[J]. Electronic Journal of Statistics, 2009, 3:886-911. [29] PRATT V. Direct least-squares fitting of algebraic surfaces[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4):145-152. [30] TAUBIN G. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation[J]. IEEE Computer Architecture Letters, 1991, 13(11):1115-1138. [31] WANG H, SUTER D. Using symmetry in robust model fitting[J]. Pattern Recognition Letters, 2003, 24(16):2953-2966. [32] NURUNNABI A, WEST G, BELTON D. Robust locally weighted regression techniques for ground surface points filtering in mobile laser scanning three dimensional point cloud data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 54(4):2181-2193. [33] DUDA R O, HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15(1):11-15. [34] LUND U J. Monte Carlo maximum likelihood circle fitting using circular density functions[J]. Computational Statistics, 2013, 28(2):393-411. [35] FROSIO I, BORGHESE N A. Real-time accurate circle fitting with occlusions[J]. Pattern Recognition, 2008, 41(3):1041-1055. [36] DE MARCO T, CAZZATO D, LEO M, et al. Randomized circle detection with isophotes curvature analysis[J]. Pattern Recognition, 2015, 48(2):411-421. [37] FISCHLER M A, BOLLES R C. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395. [38] DORST L. Total least squares fitting of k-spheres in n-D Euclidean space using an (n+2)-D isometric representation[J]. Journal of Mathematical Imaging and Vision, 2014, 50(3):214-234. [39] NURUNNABI A, SADAHIRO Y, LAEFER D F. Robust statistical approaches for circle fitting in laser scanning three-dimensional point cloud data[J]. Pattern Recognition, 2018, 81:417-431. [40] ROUSSEEUW P J, LEROY A M. Robust regression and outlier detection[M]. New Jersey:John Wiley&Sons, 2005. [41] CLEVELAND W S. Robust locally weighted regression and smoothing scatterplots[J]. Journal of the American Statistical Association, 1979, 74(368):829-836. [42] TORR P H S, ZISSERMAN A. MLESAC:A new robust estimator with application to estimating image geometry[J]. Computer Vision and Image Understanding, 2000, 78(1):138-156. [43] KANATANI K, SUGAYA Y, KANAZAWA Y. Guide to 3D Vision Computation[M]. Berlin/Heidelberg:Springer, 2016. [44] AHN S J, RUH W, WARNECKE H J. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola[J]. Pattern Recognition, 2001, 34(12):2283-2303. [45] KANATANI K, RANGARAJAN P. Hyper least squares fitting of circles and ellipses[J]. Computational Statistics&Data Analysis, 2011, 55(6):2197-2208. [46] COOPE I D. Circle fitting by linear and nonlinear least squares[J]. Journal of Optimization Theory and Applications, 1993, 76(2):381-388. [47] LI L, SUNG M, DUBROVINA A, et al. Supervised fitting of geometric primitives to 3d point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 15-20, 2019, Long Beach, CA, USA:IEEE, 2019:2652-2660. [48] SHARMA G, LIU D, MAJI S, et al. Parsenet:A parametric surface fitting network for 3d point clouds[C]//Proceedings of the European Conference on Computer Vision (ECCV), August 23-28, 2020, Glasgow, UK:Springer, 2020:261-276. [49] NURUNNABI A, WEST G, BELTON D. Outlier detection and robust normal-curvature estimation in mobile laser scanning 3D point cloud data[J]. Pattern Recognition, 2015, 48(4):1404-1419. [50] WANG Y, SUN Y, LIU Z, et al. Dynamic graph cnn for learning on point clouds[J]. ACM Transactions on Graphics (TOG), 2019, 38(5):1-12. [51] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[J]. ArXiv Preprint ArXiv:2010.11929, 2020. [52] QI C R, SU H, MO K, et al. Pointnet:Deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, November 09, 2017, Honolulu, HI, USA:IEEE, 2017:652-660. |