Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (22): 184-200.doi: 10.3901/JME.2021.22.184
Previous Articles Next Articles
LI Qiqi1, WEN Yaojie1, ZHANG Baicheng1,2,3, QU Xuanhui1,2,3
Received:
2020-11-11
Revised:
2021-06-13
Online:
2021-11-20
Published:
2022-02-28
CLC Number:
LI Qiqi, WEN Yaojie, ZHANG Baicheng, QU Xuanhui. Research Progress of Functional Graded Alloy Prepared by Additive Manufacturing Technology[J]. Journal of Mechanical Engineering, 2021, 57(22): 184-200.
[1] JURF R A, PIPES R B. Interlaminar fracture of composite materials[J]. Journal of Composite Materials, 1982, 16(5):386-394. [2] 新野正之, 平井敏雄, 渡边龙三. 倾斜机能材料-宇宙机用超耐热材料应用[J]. 日本复合材料学会志, 1987, 13(6):257-264. SHINNO M, HIRAI T, WATANABE R. Tilting functional materials-applications of super heat-resistant materials for space machines[J]. Journal of the Society of Composite Materials of Japan, 1987, 13(6):257-264. [3] BOHIDAR S K, SHARMA R, MISHRA P R. Functionally graded materials:A critical review[J]. International Journal of Research, 2014, 1(4):289-301. [4] KNOPPERS G E, GUNNINK J W, VAN Den HOUT J, et al. The reality of functionally graded material products[C/CD]//Intelligent Production Machines and Systems-First I*PROMS Virtual Conference:Proceedings, Elsevier, 2005:467. [5] GROVES J F, WADLEY H N G. Functionally graded materials synthesis via low vacuum directed vapor deposition[J]. Composites Part B:Engineering, 1997, 28(1-2):57-69. [6] SHANMUGAVEL P, BHASKAR G B, CHANDRASEKARAN M, et al. An overview of fracture analysis in functionally graded materials[J]. European Journal of Scientific Research, 2012, 68(3):412-439. [7] NODA N. Thermal stresses in functionally graded materials[J]. Journal of Thermal Stresses, 1999, 22(4-5):477-512. [8] GUO N, LEU M C. Additive manufacturing:Technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3):215-243. [9] CHEN L, HE Y, YANG Y, et al. The research status and development trend of additive manufacturing technology[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9-12):3651-3660. [10] GIBSON I, ROSEN D, STUCKER B. Development of additive manufacturing technology[M]//Additive Manufacturing Technologies. Springer, New York, 2015:19-42. [11] 刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20):128-151, 159. LIU Wei, LI Neng, ZHOU Biao, et al. Progress in additive manufacturing on complex structures and highperformance materials[J]. Journal of Mechanical Engineering, 2019, 55(20):128-151, 159. [12] 张永忠, 刘彦涛, 曹晔. 激光快速成形梯度复合结构的研究进展[J]. 航空制造技术, 2015(10):44-47, 55. ZHANG Yongzhong, LIU Yantao, CAO Ye. Research progress on gradient composite structures fabricated by laser melting deposition process[J]. Aviation Manufacturing Technology, 2015(10):44-47, 55. [13] LOH G H, PEI E, HARRISON D, et al. An overview of functionally graded additive manufacturing[J]. Additive Manufacturing, 2018, 23:34-44. [14] SALEH B, JIANG J, FATHI R, et al. 30 years of functionally graded materials:An overview of manufacturing methods, applications and future challenges[J]. Composites Part B Engineering, 2020, 201:108376. [15] KUANG X, WU J, CHEN K, et al. Grayscale digital light processing 3D printing for highly functionally graded materials[J]. Science Advances, 2019, 5(5):5790. [16] NIKBAKHT S, KAMARIAN S, SHAKERI M. A review on optimization of composite structures Part II:Functionally graded materials[J]. Composite Structures, 2019, 214:83-102. [17] ZHANG C, CHEN F, HUANG Z, et al. Additive manufacturing of functionally graded materials:Areview[J]. Materials Science and Engineering:A, 2019, 764:138209. [18] REICHARDT A, SHAPIRO A A, OTIS R, et al. Advances in additive manufacturing of metal-based functionally graded materials[J]. International Materials Reviews, 2020:1-29. [19] GIBSON I, ROSEN D W, STUCKER B. Additive manufacturing technologies[M]. New York:Springer, 2014. [20] 宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14):29-39. SONG Jianli, LI Yongtang, DENG Qilin, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14):29-39. [21] SANTO L. Laser cladding of metals:A review[J]. International Journal of Surface Science and Engineering, 2008, 2(5):327-336. [22] NAVAS C, CONDE A, FERNANDEZ B J, et al. Laser coatings to improve wear resistance of mould steel[J]. Surface and Coatings Technology, 2005, 194(1):136-142. [23] FENG J, FERREIRA M G S, VILAR R. Laser cladding of Ni-Cr/Al2O3 composite coatings on AISI 304 stainless steel[J]. Surface and Coatings Technology, 1997, 88(1-3):212-218. [24] DE OLIVEIRA U, OCELIK V, DE HOSSON J T M. Analysis of coaxial laser cladding processing conditions[J]. Surface and Coatings Technology, 2005, 197(2-3):127-136. [25] GEDDA H. Laser surface cladding:A literature survey[M]. Luleå:LuleåUniversity of Technology, 2000. [26] CHENG F T, LO K H, MAN H C. A preliminary study of laser cladding of AISI 316 stainless steel using preplaced Ni Ti wire[J]. Materials Science and Engineering:A, 2004, 380(1-2):20-29. [27] BOBBIO L D, OTIS R A, BORGONIA J P, et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar:Experimental characterization and thermodynamic calculations[J]. Acta Materialia, 2017, 127:133-142. [28] BREMEN S, MEINERS W, DIATLOV A. Selective laser melting:A manufacturing technology for the future[J]. Laser Technik Journal, 2012, 9(2):33-38. [29] YAP C Y, CHUA C K, DONG Z L, et al. Review of selective laser melting:Materials and applications[J]. Applied physics reviews, 2015, 2(4):041101. [30] WEI C, LI L, ZHANG X, et al. 3D printing of multiple metallic materials via modified selective laser melting[J]. CIRP Annals, 2018, 67(1):245-248. [31] KRUTH J P, FROYEN L, VAN VAERENBERGH J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1-3):616-622. [32] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312. [33] LOUVIS E, FOX P, SUTCLIFFE C J. Selective laser melting of aluminium components[J]. Journal of Materials Processing Technology, 2011, 211(2):275-284. [34] VANDENBROUCKE B, KRUTH J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 2007, 13(4):196-203. [35] HAN C, LI Y, WANG Q, et al. Titanium/hydroxyapatite(Ti/HA) gradient materials with quasi-continuous ratios fabricated by SLM:Material interface and fracture toughness[J]. Materials&Design, 2018, 141:256-266. [36] KHORASANI A M, GIBSON I, GOLDBERG M, et al. A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cup[J]. Materials&Design, 2016, 103:348-355. [37] OLIVEIRA N T C, ALEIXO G, CARAM R, et al. Development of Ti-Mo alloys for biomedical applications:Microstructure and electrochemical characterization[J]. Materials Science and Engineering:A, 2007, 452:727-731. [38] OLIVEIRA N T C, GUASTALDI A C. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications[J]. Acta Biomaterialia, 2009, 5(1):399-405. [39] ALMEIDA A, GUPTA D, LOABLE C, et al. Laser-assisted synthesis of Ti-Mo alloys for biomedical applications[J]. Materials Science and Engineering:C, 2012, 32(5):1190-1195. [40] RUZIC J, EMURA S, JI X, et al. Mo segregation and distribution in Ti-Mo alloy investigated using nanoindentation[J]. Materials Science and Engineering:A, 2018, 718:48-55. [41] VRANCKEN B, DADBAKHSH S, MERTENS R, et al. Selective laser melting process optimization of Ti-Mo-Ti Cmetal matrix composites[J]. CIRP Annals, 2019, 68(1):221-224. [42] HOFMANN D C, ROBERTS S, OTIS R, et al. Developing gradient metal alloys through radial deposition additive manufacturing[J]. Scientific Reports, 2014, 4:5357. [43] GAO Y, TSUMURA T, NAKATA K. Dissimilar welding of titanium alloys to steels[J]. Transactions of JWRI, 2012, 41(2):7-12. [44] KRISHNA B V, XUE W, BOSE S, et al. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures[J]. Acta Biomaterialia, 2008, 4(3):697-706. [45] SCHNEIDER-MAUNOURY C, WEISS L, ACQUIER P, et al. Functionally graded Ti6Al4V-Mo alloy manufactured with DED-CLAD®process[J]. Additive Manufacturing, 2017, 17:55-66. [46] REICHARDT A, DILLON R P, BORGONIA J P, et al. Development and characterization of Ti-6Al-4V to 304Lstainless steel gradient components fabricated with laser deposition additive manufacturing[J]. Materials&Design, 2016, 104:404-413. [47] QU H P, LI P, ZHANG S Q, et al. Microstructure and mechanical property of laser melting deposition (LMD)Ti/Ti Al structural gradient material[J]. Materials&Design, 2010, 31(1):574-582. [48] DUTTA M J, MANNA I, KUMAR A, et al. Direct laser cladding of Co on Ti-6Al-4V with a compositionally graded interface[J]. Journal of Materials Processing Technology, 2009, 209(5):2237-2243. [49] 王科. 航空发动机用整体叶盘制造技术[J]. 新材料产业, 2017(5):35-38. WANG Ke. Manufacturing technology of aeroengine integral blisk[J]. New Materials Industry, 2017(5):35-38. [50] 蔡建明, 李娟, 田丰, 等. 先进航空发动机用高温钛合金双性能整体叶盘的制造[J]. 航空制造技术, 2019, 62(19):34-40. CAI Jianming, LI Juan, TIAN Feng, et al. Manufacture of high performance titanium alloy dual-performance monolithic impeller for advanced aero engine[J]. Aviation Manufacturing Technology, 2019, 62(19):34-40. [51] 黄弋力, 朱平, 孟氢钡, 等. 合金激光增材制造用于2Cr13叶片的修复技术研究[J]. 电焊机, 2019(11):21. HUANG Yili, ZHU Ping, MENG Qingbei, et al. Research on repair technology of 2Cr13 blade by stellite alloy laser additive manufacturer[J]. Welding Machine, 2019(11):21. [52] WEIGL M, SCHMIDT M. Influence of the feed rate and the lateral beam displacement on the joining quality of laser-welded copper-stainless steel connections[J]. Physics Procedia, 2010, 5:53-59. [53] 杨海欧, 林鑫, 陈静, 等. 利用激光快速成形技术制造高温合金-不锈钢梯度材料[J]. 中国激光, 2005, 32(4):567-570. YANG Haiou, LIN Xin, CHEN Jing, et al. Functionally gradient materials prepared with laser rapid forming[J]. China Laser, 2005, 32(4):567-570. [54] CARROLL B E, OTIS R A, BORGONIA J P, et al. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition:Characterization and thermodynamic modeling[J]. Acta Materialia, 2016, 108:46-54. [55] YAKOVLEV A, TRUNOVA E, GREVEY D, et al. Laser-assisted direct manufacturing of functionally graded3D objects[J]. Surface and Coatings Technology, 2005, 190(1):15-24. [56] CHEN J, YANG Y, SONG C, et al. Interfacial microstructure and mechanical properties of316L/Cu Sn10 multi-material bimetallic structure fabricated by selective laser melting[J]. Materials Science and Engineering:A, 2019, 752:75-85. [57] TOHGO K, IIZUKA M, ARAKI H, et al. Influence of microstructure on fracture toughness distribution in ceramic-metal functionally graded materials[J]. Engineering Fracture Mechanics, 2008, 75(15):4529-4541. [58] 焦丽娟, 李军. 装甲防护材料的新葩——陶瓷-金属功能梯度复合材料[J]. 纤维复合材料, 2007(1):56-59. JIAO Lijuan, LI Jun. Innovation of the armor protective materials-ceramic-metal functionally gradient composites[J]. Fiber Composite Materials, 2007(1):56-59. [59] ARIFIN A, SULONG A B, MUHAMAD N, et al. Material processing of hydroxyapatite and titanium alloy(HA/Ti) composite as implant materials using powder metallurgy:A review[J]. Materials&Design, 2014, 55:165-175. [60] WANG D, WANG H, SUN S, et al. Fabrication and characterization of Ti B2/Ti C composites[J]. International Journal of Refractory Metals and Hard Materials, 2014, 45:95-101. [61] LIU Weiping, DUPONT J N. Fabrication of functionally graded Ti C/Ti composites by laser engineered net shaping[J]. Scripta Materialia, 2003, 48(9):1337-1342. [62] ZHANG Y, WEI Z, SHI L, et al. Characterization of laser powder deposited Ti-Ti C composites and functional gradient materials[J]. Journal of Materials Processing Technology, 2008, 206(1-3):438-444. [63] NISHINO T, URAI S, OKAMOTO I, et al. Wetting and reaction products formed at interface between Si C and Cu-Ti alloys[J]. Welding International, 1992, 6(8):600-605. [64] BARSOUM M W, EL-RAGHY T. Synthesis and characterization of a remarkable ceramic:Ti3Si C2[J]. Journal of the American Ceramic Society, 1996, 79(7):1953-1956. [65] LIU S, ZHANG L, YIN X, et al. Microstructure and mechanical properties of Si C and carbon hybrid fiber reinforced Si C matrix composite[J]. International Journal of Applied Ceramic Technology, 2011, 8(2):308-316. [66] FAN X, YIN X, CAO X, et al. Improvement of the mechanical and thermophysical properties of C/Si Ccomposites fabricated by liquid silicon infiltration[J]. Composites Science and Technology, 2015, 115:21-27. [67] GARBIEC D, LESHCHYNSKY V, COLELLA A, et al. Structure and deformation behavior of Ti-Si C composites made by mechanical alloying and spark plasma sintering[J]. Materials, 2019, 12(8):1276. [68] GIURANNO D, SOBCZAK N, BRUZDA G, et al. Studies of the joining-relevant interfacial properties in the Si-Ti/C and Si-Ti/Si C systems[J]. Journal of Materials Engineering and Performance, 2020(29):4864-4871. [69] MOVCHAN B A, YAKOVCHUK K Y. Graded thermal barrier coatings, deposited by EB-PVD[J]. Surface and Coatings Technology, 2004, 188:85-92. [70] ZHANG Y, BANDYOPADHYAY A. Direct fabrication of compositionally graded Ti-Al2O3 multi-material structures using laser engineered net shaping[J]. Additive Manufacturing, 2018, 21:104-111. [71] LI L, WANG J, LIN P, et al. Microstructure and mechanical properties of functionally graded Ti Cp/Ti6Al4V composite fabricated by laser melting deposition[J]. Ceramics International, 2017, 43(18):16638-16651. [72] ZHANG J, ZHANG Y, LI W, et al. Microstructure and properties of functionally graded materials Ti6Al4V/Ti Cfabricated by direct laser deposition[J]. Rapid Prototyping Journal, 2018, 24(4):677-687. [73] MAHAMOOD R M, AKINLABI E T. Laser metal deposition of functionally graded Ti6Al4V/Ti C[J]. Materials&Design, 2015, 84:402-410. [74] LI S N, XIONG H P, LI N, et al. Mechanical properties and formation mechanism of Ti/Si C system gradient materials fabricated by in-situ reaction laser cladding[J]. Ceramics International, 2017, 43(1):961-967. [75] LI N, LIU W, XIONG H, et al. In-situ reaction of Ti-Si-Ccomposite powder and formation mechanism of laser deposited Ti6Al4V/(Ti C+Ti3Si C2) system functionally graded material[J]. Materials&Design, 2019, 183:108155. [76] MUMTAZ K A, HOPKINSON N. Laser melting functionally graded composition of Waspaloy®and Zirconia powders[J]. Journal of Materials Science, 2007, 42(18):7647-7656. [77] DEMIR A G, PREVITALI B. Multi-material selective laser melting of Fe/Al-12Si components[J]. Manufacturing Letters, 2017, 11:8-11. [78] 张百成, 章林, 任淑彬, 等. 一种基于选区激光熔化技术制备梯度材料的装置及方法:中国, ZL201810292599. 9[P]. 2019-03-12. ZHANG Baicheng, ZHANG Lin, REN Shubin, et al. Device and method for preparing gradient material based on selective laser melting technology:China, ZL201810292599. 9[P]. 2019-03-12. |
[1] | ZHANG Yunshu, WU Bintao, ZHAO Yun, DING Donghong, PAN Zengxi, LI Huijun. Research Progress in the Numerical Simulation of Heat and Mass Transfer during Wire Arc Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(8): 65-80. |
[2] | LI Kun, JI Chen, BAI Shengwen, JIANG Bin, PAN Fusheng. Research Status and Prospects of Wire-arc Additive Manufacturing Technology for High-performance Magnesium Alloys [J]. Journal of Mechanical Engineering, 2024, 60(7): 289-311. |
[3] | CHEN Wei, ZHAO Jie, ZHU Libin, CAO Haibo. Research Progress on Additive Manufacturing of Low Activation Steels [J]. Journal of Mechanical Engineering, 2024, 60(7): 312-333. |
[4] | DU Wenbo, LI Xiaoliang, LI Xia, HU Shenheng, ZHU Sheng. Research Status of Additive Friction Stir Deposition Process [J]. Journal of Mechanical Engineering, 2024, 60(7): 374-384. |
[5] | ZHENG Yang, ZHAO Zihao, LIU Wei, YU Zhengzhe, NIU Wei, LEI Yiwen, SUN Ronglu. Research Progress in High-performance Mg Alloys Prepared by Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(7): 385-400. |
[6] | ZHANG Saifan, LI Bo, XUAN Fuzhen. Signal Denoising and Classification Prediction Method for On-line Monitoring of Acoustic Emission During Laser melting Process [J]. Journal of Mechanical Engineering, 2024, 60(6): 163-176. |
[7] | DU Jun, WANG Qianyuan, HE Jimiao, ZHANG Yongheng, WEI Zhengying. Influence of the Offset Distance between Droplet and Molten Pool on the Molten Pool Morphology in TIG-assisted Droplet Deposition Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(5): 219-230. |
[8] | JIANG Zhoumingju, XIONG Yi, WANG Baicun. Human-machine Collaborative Additive Manufacturing for Industry 5.0 [J]. Journal of Mechanical Engineering, 2024, 60(3): 238-253. |
[9] | ONG Jun, TANG Qian, LUO Zhichao, FENG Qixiang, NIE Yunfei, REN Zhihao. Mesoscopic Numerical Simulation during Selective Laser Melting of Maraging Steel [J]. Journal of Mechanical Engineering, 2024, 60(3): 282-295. |
[10] | SHI Yilei, QUAN Yinzhu, XU Haiying, WANG Zhuang, MA Wenlong, PENG Yong. Factors Analysis on the Electron Beam Waist Position of Gas Discharger Electron Beam Gun of Coaxial Beam Wire [J]. Journal of Mechanical Engineering, 2024, 60(3): 328-336. |
[11] | RONG Peng, Cheng Jing, DENG Hongwen, TAO Changan, GAO Chuanyun, RAN Xianzhe, CHENG Xu, TANG Haibo, LIU Dong. Effect of Different Heat Treatments on Microstructure and Tensile Properties of TC4 Titanium Alloy Fabricated by Laser Directed Energy Deposition [J]. Journal of Mechanical Engineering, 2024, 60(20): 99-107. |
[12] | XIA Lingwei, XIE Yimin, MA Guowei. Co-optimization for 3D Printing Porous Structures and Paths under Manufacturing Constraint [J]. Journal of Mechanical Engineering, 2024, 60(19): 241-249. |
[13] | ZHANG Mingkang, SHI Wenqing, XU Meizhen, WANG Di, CHEN Jie. Compression and Fluid Pressure Drop Properties of Implicit Surface Cellular Structures [J]. Journal of Mechanical Engineering, 2024, 60(18): 394-406. |
[14] | HUANG Jinjie, ZHAO Xin. Survey on Slicing Computing in 3D Printing [J]. Journal of Mechanical Engineering, 2024, 60(17): 235-262. |
[15] | YU Kang, FU Jianzhong, HE Yong. Research Progress of Tissue Engineering Scaffolds for Soft Tissue Defect Repair [J]. Journal of Mechanical Engineering, 2024, 60(15): 255-271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||