Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (13): 201-213.doi: 10.3901/JME.2021.13.201
Previous Articles Next Articles
LUO Hongping1,2,3, ZHANG Qingrong1,2,3, LIU Guixian1,2,3, ZHANG Yongjun1,2,3
Received:
2020-07-15
Revised:
2020-12-27
Online:
2021-07-05
Published:
2021-08-31
CLC Number:
LUO Hongping, ZHANG Qingrong, LIU Guixian, ZHANG Yongjun. The State of the Art and Development of Power Supply Technology in ECM[J]. Journal of Mechanical Engineering, 2021, 57(13): 201-213.
[1] CHEN Y, JIANG L, FANG M, et al. Multi-time scale simulation of pulse electrochemical machining process with multi-physical model[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(7-8):2203-2210. [2] 王建业. 电解加工原理及应用[M]. 北京:国防工业出版社, 2001.WANG Jianye. Principle and application of electrochemical machining[M]. Beijing:National Defense Industry Press, 2001. [3] AKMD S, ALTENA H, MCGEOUGH J A. Precision ECM by process characteristic modelling[J]. CIRP Annals-Manufacturing Technology, 2000, 49(1):151-155. [4] SCHUSTER R, KIRCHNER V, ALLONGUE P, et al. Electrochemical micromachining[J]. Science. 2000, 289(5476):98-101. [5] 王峰, 赵建社, 刘鼎明, 等. 钛合金深窄槽可控振动辅助电解加工试验研究[J]. 中国机械工程. 2019, 30(20):2395-2402.WANG Feng, ZHAO Jianshe, LIU Dingming, et al.Experimental research on controllable vibration assisted ECM of deep narrow grooves of titanium alloy[J]. China Mechanical Engineering, 2019, 30(20):2395-2402. [6] BHATTACHARYYA B, MUNDA J, MALAPATI M. Advancement in electrochemical micro-machining[J]. International Journal of Machine Tools and Manufacture, 2004, 44(15):1577-1589. [7] ZHANG C, YAO J, ZHANG C, et al. Electrochemical milling of narrow grooves with high aspect ratio using a tube electrode[J]. Journal of Materials Processing Technology, 2020, 282:116695. [8] XU L, PAN Y, ZHAO C. Distance effects in electrochemical micromachining[J]. Scientific Reports, 2016, 6(1):31778. [9] 王建业, 王晓燕. MOSFET高频、窄脉冲电解加工新型电源试验研究[J]. 航空制造技术, 2001(1):27-29.WANG Jianye, WANG Xiaoyan. The experimental investigations of the up-to-date MOSFET HSPECM power[J]. Aeronautical Manufacturing Technology, 2001(1):27-29. [10] 戴立强, 怀华培, 朱海波, 等. 1000A精密脉冲电解加工电源的研制[C]//第17届全国特种加工学术会议, 2017-11-17, 中国, 广州. 2017:574-576. DAI Liqiang, HUAI Huapei, ZHU Haibo, et al. Development of 1000A precision pulsed electrolytic machining power supply[C]//The 17th National Conference on Special Machining. Special Processing Branch of Chinese Mechanical Engineering Society, 2017-11-17, Guangzhou, Guangdong, China:2017.574-576. [11] 诸跃进, 冯青. 一种微秒级脉冲电解加工工程化电源研制[J]. 电加工与模具, 2010(1):61-66.ZHU Yuejin, FENG Qing. Research on the industrialization power supply for microsecond-grade pulse electrochemical machining[J]. Electromachining & Mould, 2010(1):61-66. [12] MARTINEZ A R, GRANDA U R E E, ZUNIGA L M, et al. Pulsed power supply for electrochemical machining[C]//2015 IEEE International Autumn Meeting on Power, Electronics and Computing, November 4-6. 2015, Ixtapa, Mexico:ROPEC, 2015:1-6. [13] 刘桂贤, 张永俊, 罗红平, 等. 基于SOPC技术的脉冲电解加工电源的研究[J]. 电加工与模具, 2015(5):27-30.LIU Guixian, ZHANG Yongjun, LUO Hongping, et al. Study on Electrochemical machining pulse power supply based on SOPC technology[J]. Electromachining & Mould, 2015(5):27-30. [14] 刘桂贤, 张永俊, 罗红平, 等. 大导程滚珠螺母滚道电解加工机床[J]. 电加工与模具, 2016(1):59-61.LIU Guixian, ZHANG Yongjun, LUO Hongping, et al. Electrochemical machine tool for manufacturing large-lead ball nut raceway[J]. Electrochemical & Mould, 2016(1):59-61. [15] 刘桂贤, 罗红平, 张永俊, 等. 基于SOPC技术的电解加工高频脉冲电源:中国, 201410338053.4[P]. 2014-11-05.LIU Guixian, LUO Hongping, ZHANG Yongjun, et al. Electrochemical machining high frequency pulse power source based on SOPC technology:China, 201410338053.4[P]. 2014-11-05. [16] LIU G, LUO H, ZHANG Y, et al. Pulse electrochemical machining of large lead ball nut raceway using a spherical cathode[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(1-4):191-200. [17] 张传运.大导程滚珠螺母滚道电解铣削新方法研究[D]. 广州:广东工业大学, 2020.ZHANG Chuanyun. Research on new method of electrochemical milling ball nut inner raceway[D]. Guangzhou:Guangdong University of Technology, 2020. [18] 李红英, 程小元, 张明岐. 双极性脉冲精密振动电解加工技术[C]//第14届全国特种加工学术会议, 2011-10-22, 中国, 苏州. 2011:402-406.LI Hongying, CHENG Xiaoyuan, ZHANG Mingqi. Bipolar pulse precision vibration assisted electrochemical machining technology[C] The 14th National Conference on special machining. October 12, 2011, Suzhou, China. 2011:402-406. [19] MENG L, ZENG Y, ZHU D. Wire electrochemical micromachining of Ni-based metallic glass using bipolar nanosecond pulses[J]. International Journal of Machine Tools and Manufacture, 2019, 146:103439. [20] 金兴伟. 双极性高频脉冲电解电源的研制及工艺试验的研究[D]. 广州:广东工业大学, 2009.JIN Xingwei. Development of bipolar high-frequency pulse power supply for ECM and experiments[D]. Guangzhou:Guangdong University of Technology, 2009. [21] NATSU W, KURAHATA D. Influence of ECM pulse conditions on WC alloy micro-pin fabrication[J]. Procedia CIRP, 2013, 6:401-406. [22] LI Z, JIANG X, GE J, et al. Research of small deep curved hole electrochemical machining based on pulse power supply[C]//2019 22nd International Conference on Electrical Machines and Systems, August 11-14, 2019, Harbin, China:ICEMS, 2019:1-4. [23] GAO C, QU N, HE H, et al. Double-pulsed wire electrochemical micro-machining of type-304 stainless steel[J]. Journal of Materials Processing Technology, 2019, 266:381-387. [24] 王思聪, 後藤昭弘, 中田篤史. 单极性电源电解加工硬质合金的研究[J]. 电加工与模具, 2018(4):40-44.WANG Sicong, GOTO A, NAKATA A. Study on electrochemical machining of sintered carbide with monopolar-pulse power supply[J]. Electromachining & Mould, 2018(4):40-44. [25] KOCK M, KIRCHNER V, SCHUSTER R. Electrochemical micromachining with ultrashort voltage pulses-a versatile method with lithographical precision[J]. Electrochimica Acta, 2003, 48(20-22):3213-3219. [26] SPIESER A, IVANOV A. Design of an electrochemical micromachining machine[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(5):737-752. [27] QIN S, DENG H. Electrochemical etching of tungsten for fabrication of sub-10-nm tips with a long taper and a large shank[J]. Nanomanufacturing and Metrology, 2019, 2(4):235-240. [28] KIM B H, NA C W, LEE Y S, et al. Micro electrochemical machining of 3D micro structure using dilute sulfuric acid[J]. CIRP Annals-Manufacturing Technology, 2005, 54(1):191-194. [29] 张朝阳, 朱荻, 王明环, 等. 超短脉冲电流微细电解加工技术研究[J]. 中国机械工程, 2005, 16(14):1295-1298.ZHANG Zhaoyang, ZHU Di, WANG Minghuan, et al. Investigation on electrochemical micro-machining using ultra-short voltage pulses[J]. China Mechanical Engineering, 2005, 16(14):1295-1298 [30] 马晓宇. 阵列孔微细电解加工基础技术研究[D]. 北京:清华大学, 2010.MA Xiaoyu. Research on fundamental techniques of micro ECM for array hole fabrication[D]. Beijing:Tsinghua University, 2010. [31] SCHUSTER R. Electrochemical microstructuring with short voltage pulses[J]. Chem. Phys. Chem., 2007, 8(1):34-39. [32] SPIESER A, IVANOV A. Design of a pulse power supply unit for micro-ECM[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(1-4):537-547. [33] PARK M S, CHU C N. Micro-electrochemical machining using multiple tool electrodes[J]. Journal of Micromechanics and Microengineering, 2007, 17(8):1451-1457. [34] GIANDOMENICO N, MEYLAN O. Development of a new generator for electrochemical micro-machining[J]. Procedia CIRP, 2016, 42:804-808. [35] 李小海, 赵万生, 王振龙. 微细电解加工脉冲电源的研制[J]. 电加工与模具. 2004(5):56-58.LI Xiaohai, ZHAO Wansheng, WANG Zhenlong. Research on a high frequency short pulse power supply for electrolytic micromachining[J]. Electromachining & Mould, 2004, (5):56-58. [36] 张朝阳. 纳秒脉冲电流微细电解加工技术研究[D]. 南京:南京航空航天大学, 2006.ZHANG Zhaoyang. The investigation on the electrochemical micromachining (ECMM) with nanosecond-pulse current[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006. [37] ZHANG Y, TANG Y, LIU X, et al. Development of ultra-short pulse power supply applicable to micro-ECM[J]. Materials Science Forum, 2009, 626-627:369-374. [38] 朱永伟, 邵健, 苏楠, 等. 同步超声振动调制微细放电-电解加工技术[J]. 机械工程学报, 2014, 50(1):185-192.ZHU Yongwei, SHAO Jian, SU Nan, et al. Research on micro electro-discharged & electrolysis machining technology modulated by synchronizing ultrasonic vibrating[J]. Journal of Mechanical Engineering, 2014, 50(1):185-192. [39] 孔全存. 微细电解加工三电极脉冲电源及基础工艺研究[D]. 北京:清华大学, 2015.KONG Quancun. Research on three-electrode pulse power supply and fundamental process of micro ECM[D].Beijing:Tsinghua University, 2015. [40] 王琨宁. 基于静电驱动的微细电解电火花复合加工脉冲电源研究[D]. 深圳:哈尔滨工业大学, 2017.WANG Kunning. Research on pulse power for micro ECDM based on electrostatic actuator[D]. Shenzhen:Harbin Institute of Technology, 2017. [41] 朱保国. 脉冲电化学微细加工关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2007.ZHU Baoguo. Research on key techniques of pulses electrochemical micromachining[D]. Harbin:Harbin Institute of Technology, 2007. [42] XU L, WANG X, ZHAO C. Electrochemical micromachining with sinusoidal signals[J]. Journal of the Electrochemical Society, 2019, 166(10):E275-E279. [43] PATEL D S, SHARMA V, JAIN V K, et al. Reducing overcut in electrochemical micromachining process by altering the energy of voltage pulse using sinusoidal and triangular waveform[J]. International Journal of Machine Tools and Manufacture, 2020, 151:103526. [44] LI D, YANG S, WU Y, et al. Microstructure of electrochemical machining using mask by dual power supply[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9-12):3101-3108. [45] KOYANO T, KUNIEDA M. Ultra-short pulse ECM using electrostatic induction feeding method[J]. Procedia CIRP, 2013, 6:390-394. [46] HAN W, KUNIEDA M. Research on servo feed control of electrostatic induction feeding micro-ECM[J]. Precision Engineering, 2016, 45:195-202. [47] HAN W, KUNIEDA M. Fabrication of micro-rods with electrostatic induction feeding ECM[J]. Journal of Materials Processing Technology, 2016, 235:92-104. [48] XU L, ZHAO C. Nanometer-scale accuracy electrochemical micromachining with adjustable inductance[J]. Electrochimica Acta, 2017, 248:75-78. [49] ZHAO C, BAI X, XU L. Controlled electrochemical nanomachining with adjustable capacitance[J]. Journal of The Electrochemical Society, 2018, 165(7):E269-E273. [50] 付文淼. 反馈控制微细电化学加工技术研究[D]. 秦皇岛:燕山大学, 2018.FU Wenmiao. Study on electrochemical machining micro technology with feedback control[D]. Qinghuangdao:Yanshan University, 2018. [51] 赵传军. 可控脉冲微细电解加工技术研究[D]. 秦皇岛:燕山大学, 2019.ZHAO Chuanjun. Research on controllable pulse electrochemical micromachining technology[D]. Qinghuangdao:Yanshan University, 2019. [52] MOLE T, MCDONALD B, MULLERY S, et al. The development of a pulsed power supply for μECM[J]. Procedia CIRP, 2016, 42:809-814. [53] SAXENA K K, QIAN J, REYNAERTS D. A review on process capabilities of electrochemical micromachining and its hybrid variants[J]. International Journal of Machine Tools and Manufacture. 2018, 127:28-56. [54] BURKERT S, SCHULZE H P, Gmelin T, et al. The pulse electrochemical micromachining (PECMM)[J]. International Journal of Material Forming, 2009, 2(S1):645-648. [55] SCHULZE H P, HERZIG M, KRONING O. Differentiation of process-energy-sources (PES) in pulsed electrochemical machining (PECM) based on their controllability[C]//International Symposium on Electrochemical Machining Technology 2016, Novembe 17-18, 2016, Mechelen, the Northeastern Town of Brussels, Belgium:INSEC, 2016:15-20. [56] HAN F, CHEN W, YING W, et al. Effects of polarization on machining accuracy in pulse electrochemical machining[J]. Procedia CIRP, 2018, 68:493-498. [57] LYUBIMOV V V, VOLGIN V M, VENEVTSEV A Y, et al. Microelectrochemical machining at the ultrasmall interelectrode gaps with the use of the packets of nanosecond voltage pulses[J]. Procedia CIRP, 2016, 42:831-836. [58] CLIFTON D, MOUNT A R, ALDER G M, et al. Ultrasonic measurement of the inter-electrode gap in electrochemical machining[J]. International Journal of Machine Tools and Manufacture, 2002, 42(11):1259-1267. [59] 王贤成, 狄士春, 迟关心, 等. 间隙平均电流检测在高频窄脉冲电解加工中的应用[J]. 航空精密制造技术, 2006(2):36-38.WANG Xiancheng, DI Shichun, CHI Guanxin, et al. Gap average current measuring applied in HSPECM[J]. Aviation Precision Manufacturing Technology, 2006(2):36-38. [60] LU Y, LIU K, ZHAO D. Experimental investigation on monitoring interelectrode gap of ECM with six-axis force sensor[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(5-8):565-572. [61] LI Y, ZHENG Y, YANG G, et al. Localized electrochemical micromachining with gap control[J]. Sensors and Actuators A:Physical, 2003, 108(1-3):144-148. [62] 孔全存, 李勇, 朱效谷, 等. 基于双电层电容的微细电解加工间隙的在线检测[J]. 纳米技术与精密工程, 2013, 11(6):529-535.KONG Quancun, Li Yong, Zhu Xiaogu, et al. On line detection of micro electrochemical machining gap based on electric double layer capacitor[J] Nanotechnology and Precision Engineering, 2013, 11(6):529-535. [63] ZHAO W, LI X, WANG Z. Study on micro electrochemical machining at micro to meso-scale[C]//Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. January 18-21, 2006, Zhuhai, China, 2006:325-329. [64] KOYANO T, KUNIEDA M. Micro electrochemical machining using electrostatic induction feeding method[J]. CIRP Annals, 2013, 62(1):175-178. [65] KANG M, LI H, FU X. Measurement of electrochemical machining initial gap based on machine vision[J]. Advanced Materials Research, 2011, 230-232:1190-1194. [66] CHEN W, HAN F. Short-circuit avoidance in electrochemical machining based on polarization voltage during pulse off time[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5-8):2531-2539. [67] 范延涛, 赵建社, 袁立新, 等. 随动参比电压短路保护系统及其电解加工工艺研究[J]. 电加工与模具, 2019(S1):39-42.FAN Yantao, ZHAO Jianshe, YUAN Lixin, et al. Study on the random reference voltage short circuit protection system and its electrolytic processing process[J]. Electrical Processing and Tooling, 2019(S1):39-42. [68] SHIU C, WU W, HUANG P. The Research of FPGA-based short current protection for micro electrochemical machining[J]. Key Engineering Materials, 2015, 656-657:398-403. [69] 张建华, 葛红宇, 李宏胜, 等. 微细电化学加工纳秒脉冲电源的研制[J]. 制造技术与机床, 2011(10):37-40.ZHANG Jianhua, GE Hongyu, LI Hongsheng, et al. Development of nanosecond pulsed power supply for microfabrication electrochemical processing[J]. Manufacturing Technology and Machine Tools, 2011(10):37-40. |
[1] | WU Shujing, WANG Dazhong, GU Guquan, HUANG Shuai, DONG Guojun, GUO guoqiang, AN Qinglong, LI Changhe. High-performance Machining of Complex Curved Surfaces in Multi-energy Fields: Key Technologies and Advancements [J]. Journal of Mechanical Engineering, 2024, 60(9): 152-167. |
[2] | CHEN Zhaojie, XIE Jin, LIU Junhan, XIONG Changxin, LI Difan. Study on Impulse-discharge Driven Abrasive Flow Assisted Grinding of Monocrystalline SiC [J]. Journal of Mechanical Engineering, 2024, 60(9): 383-392. |
[3] | CHEN Zhixu, LI Chenxing, YANG Chunli. Research on Robotic Gas Tungsten Arc and Wire-Based Deposition Process for Repairing Damaged Blades [J]. Journal of Mechanical Engineering, 2024, 60(6): 187-196. |
[4] | REN Zhongkai, LI He, XU Yanan, CHENG Qian, FENG Hao, WANG Tao. Constitutive Model and Microstructural Evolution for Tensile Behavior of Carbon Steel Ultrathin Strip under Pulsed Electric Field [J]. Journal of Mechanical Engineering, 2024, 60(6): 245-260. |
[5] | ZHAO Chuanjun, WANG Jipeng, XU Lizhong. Research on Accuracy and Localization Characterization of Pulse Electrochemical Micromachining Based on Equivalent Physical Model [J]. Journal of Mechanical Engineering, 2024, 60(5): 378-389. |
[6] | ZHANG Tingting, XU Zhenbo, WANG Yan, BIAN Gongbo, WANG Tao, WANG Wenxian. High Frequency Pulse Current Assisted One-step Rolling-welding Fabrication and Interfacial Bonding Mechanism of Magnesium/Aluminum Alloy Composite Plates [J]. Journal of Mechanical Engineering, 2024, 60(4): 305-315. |
[7] | YUAN Xiaoming, WANG Ning, WANG Weidong, ZHANG Lijie, ZHU Yong. Research on Resonance Mechanism and Collaborative Optimization for the Self-excited Oscillating Pulse Cavitation Jet Nozzle [J]. Journal of Mechanical Engineering, 2024, 60(16): 377-389. |
[8] | PENG Zilong, WU Jinyin, WANG Mengjie, LI Yinan, LAN Hongbo. Electric Field Driving Micro-scale 3D Printing Mask Electrochemical Machining Microstructure [J]. Journal of Mechanical Engineering, 2024, 60(15): 420-436. |
[9] | CHENG Jin-jie, SHI Wen-ze, LU Chao, WEI Yun-fei, CHEN Yao, CHEN Guo. Application of Pulse Compression Technology in Electromagnetic Ultrasonic Thickness Measurement of High-Temperature Continuous Casting [J]. Journal of Mechanical Engineering, 2023, 59(8): 20-31. |
[10] | SHA Lisa, LIU Jian. Effects of Pulsed Magnetic Treatment for the Boring Performance of the Drill Bit [J]. Journal of Mechanical Engineering, 2023, 59(7): 176-185. |
[11] | ZHANG Yongfei, LU Wenqi, YANG Liangliang, WU Wenjun, ZHU Qixin. Sensorless Vector Control System of Synchronous Reluctance Motor Based on Hybrid Control in Full Speed Domain [J]. Journal of Mechanical Engineering, 2023, 59(5): 223-234. |
[12] | WANG Dengyong, LE Huayong, ZHU Di. Investigation of the Shaping Process of Island-like High Convex Structure on Thin-walled Revolving Part during Counter-rotating Electrochemical Machining [J]. Journal of Mechanical Engineering, 2023, 59(3): 337-348. |
[13] | ZHANG Yan, SUN Jixing, LIU Jiyong, GUAN Zhuoran, LEI Dong, GUO Xugang, LIU Yang, WANG Xin. Stray Current Characteristics of DC Traction Power Supply System when Several Routes Cross [J]. Journal of Electrical Engineering, 2023, 18(3): 117-125. |
[14] | TAO Haijun, XIAO Qunxing, ZHANG Jinsheng. Single Phase Cascaded H-bridge Inverter and Its Vector Control [J]. Journal of Electrical Engineering, 2023, 18(3): 196-205. |
[15] | CHEN Xiangyu, WANG Chang, LI Luchang, WANG Anqi, YANG Lin, FU Shouqiang, HAN Minxiao, LIU Haijun. Analysis of Power Supply Capacity of DC Distribution Network Considering Optical Storage Integrated Power Station [J]. Journal of Electrical Engineering, 2023, 18(3): 242-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||