[1] 杨宏. 双碳背景下新能源产业发展趋势分析[J]. 中国 战略新兴产业, 2024(3): 115-117. YANG Hong. Analysis of the development trends of the new energy industry under the background of dual carbon[J]. China’s Strategic Emerging Industries , 2024(3): 115-117. [2] MISHRA S, BANERJEE J, PANAKKAL J P. Fabrication of nuclear fuel elements[J]. Nuclear Fuel Cycle, 2023, 5: 81-116. [3] 祁学潮,李硕,胡建民,等. XN3000 六氟化铀运输容 器 B2 环缝焊接工艺改进[J]. 山西冶金, 2023, 46(3): 52-54. QI Xuechao, LI Shuo, HU Jianmin, et al. Improvement of welding process for B2 ring seam of XN3000 uranium hexafluoride transport container[J]. Shanxi Metallurgy, 2023, 46(3): 52-54. [4] 杨震,连茜雯,杨掌众,等. 关于贫化铀容器露天存放 的安全分析[J]. 核安全, 2022, 21(1): 42-50. YANG Zhen, LIAN Qianwen, YANG Zhangzhong, et al. Safety analysis of depleted uranium containers for open storage[J]. Nuclear Safety, 2022, 21(1): 42-50. [5] LIU Zuming , CHEN Shiyu , YUAN Xin , et al. Magnetic-enhanced keyhole TIG welding process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1-4): 275-285. [6] LIU Shang, LIU Zuming, ZHAO Xingchaun, et al. Influence of cusp magnetic field configuration on K-TIG welding arc penetration behavior[J]. Journal of Manufacturing Processes, 2020, 53: 229-237. [7] 赵建强,石永华,詹家通,等. 外加轴向磁场 K-TIG 横 焊电弧形态及焊缝成形[J]. 焊接, 2023(4): 1-6. ZHAO Jianqiang, SHI Yonghua, ZHAN Jiatong, et al. The arc shape and weld behavior of K-TIG cross-welding with an axial magnetic field[J]. Welding, 2023(4): 1-6. [8] 石永华,宁强,崔延鑫. Q345R 钢纵向磁场辅助 K-TIG 焊接接头组织和性能研究[J]. 电焊机, 2020, 50(9): 87-91. SHI Yonghua, NING Qiang, CUI Yanxin. Study on microstructure and properties of Q345R steel K-TIG welded joint with longitudinal magnetic field[J]. Welding Machines, 2020, 50(9): 87-91. [9] 张刚,徐梓龙,石玗,等. 双频调制脉冲 TIG 打底焊 电弧-熔池行为分析[J]. 机械工程学报, 2023, 59(12): 245-252. ZHANG Gang, XU Zilong, SHI Yu, et al. Analysis of arc-weld pool behavior of double-frequency modulated pulse TIG root pass welding[J]. Journal of Mechanical Engineering, 2023, 59(12): 245-252. [10] 张刚,徐梓龙,王开飞,等. 直流叠加脉冲型 TIG 焊 电弧-熔池特性分析[J]. 焊接学报, 2022, 43(2): 75-81. ZHANG Gang, XU Zilong, WANG Kaifei, et al. Analysis of arc and weld pool characteristics in direct current added-pulsed TIG welding process[J]. Transactions of the China Welding Institution, 2022, 43(2): 75-81. [11] WANG Zhenmin, JIANG Donghang, WU Jianwen, et al. A review on high-frequency pulsed arc welding[J]. Journal of Manufacturing Processes, 2020, 60: 503-519. [12] 从保强,王义朋,齐铂金,等. 铝合金超音频双脉冲调 制 VPTIG 深熔焊接技术[J]. 航空制造技术, 2018, 61(8): 38-42, 47. CONG Baoqiang, WANG Yipeng, QI Bojin, et al. Aluminum alloy ultra-high frequency double pulse modulated VPTIG deep-melting welding technology[J]. Aviation Manufacturing Technology, 2018, 61(8): 38-42, 47. [13] 姜自昊,肖宏,曾才有,等. 中厚铝合金 DP-VPTIG 焊 接深熔小孔作用机制研究[J]. 机械工程学报, 2025, 61(6): 133-140. JIANG Zihao, XIAO Hong, ZENG Caiyou, et al. Study on the keyhole effects in DP-VPTIG welding of medium-thick aluminum alloys[J]. Journal of Mechanical Engineering, 2025, 61(6): 133-140. [14] 张瑞华,尹燕,樊丁,等. A-TIG 焊熔深增加机理的数 值模拟[J]. 机械工程学报, 2008(5): 175-180. ZHANG Ruihua, YIN Yan, FAN Ding, et al. Numerical simulation of the mechanism for increasing the penetration depth of A-TIG welding[J]. Journal of Mechanical Engineering, 2008(5): 175-180. [15] 李艳,耿韶宁,蒋平,等. 超高功率激光-电弧复合焊 接飞溅演化行为及抑制方法[J]. 机械工程学报, 2024, 60(16): 98-107. LI Yan, GENG Shaohua, JIANG Ping, et al. Evolution behavior and suppression method of spatter in ultra-high power laser-Arc hybrid welding[J]. Journal of Mechanical Engineering, 2024, 60(16): 98-107. [16] 刘黎明,杨环宇,徐信坤. TA2 中厚板低功率激光诱导 双电弧高效焊接及机理[J]. 焊接学报, 2023, 44(1): 1-7, 129. LIU Liming, YANG Huanyu, XU Xinkun. Efficient welding of TA2 medium-thickness plates via low-power laser-Induced dual arc welding and its mechanism[J]. Transactions of the China Welding Institution, 2023, 44(1): 1-7, 129. [17] 杨环宇,徐信坤,巴现礼,等. 低功率激光-双电弧焊 接钛合金中厚板工艺及机理[J]. 焊接学报, 2023, 43(12): 12-19. YANG Huanyu, XU Xinkun, BA Xianli, et al. Process and mechanism of low power laser-double arc welding of titanium alloy plate[J]. Transactions of the China Welding Institution, 2023, 43(12): 12-19. [18] 李大东,白威,邓健,等. 50 mm 厚板 TC4 及 TA17 钛 合金真空电子束焊接工艺研究[J]. 钢铁钒钛, 2022, 43(3): 40-46. LI Dadong, BAI Wei, DENG Jian, et al. Research on vacuum electron beam welding technology of 50 mm thick TC4 and TA17 titanium alloys[J]. Iron and Steel Van and Titanium, 2022, 43(3): 40-46 [19] FARR J R, JAWAD M H. Guidebook for the design of ASME section VⅢ pressure vessels[M]. New York: The American Society of Mechanical Engineers, 2001. [20] CHEN Xin, MU Zhongyan, HU Renzhi, et al. A unified model for coupling mesoscopic dynamics of keyhole, metal vapor, arc plasma, and weld pool in laser-arc hybrid welding[J]. Journal of Manufacturing Processes, 2019, 41: 119-134. [21] ZHOU J, TSAI H L. Modeling of transport phenomena in hybrid laser-MIG keyhole welding[J]. International Journal of Heat and Mass Transfer, 2008, 51(17-18): 4353-4366. [22] LIN M L, EAGAR T W. Pressures produced by gas tungsten arcs[J]. Metallurgical transactions B, 1986, 17: 601-607. [23] LONG Jian, ZHANG Linjie, NING Jie, et al. Dynamic behavior of plasma and molten pool of pure titanium during hyperbaric laser welding[J]. Infrared Physics & Technology, 2021, 115: 103686. [24] LIMMANEEVICHITR C , KOU S. Experiments to simulate effect of marangoni convection on weld pool shape[J]. Welding Journal, 2000, 79(8): 231-241. [25] CORRADI D R, BRACARENSE A Q, WU B, et al. Effect of magnetic arc oscillation on the geometry of single-pass multi-layer walls and the process stability in wire and arc additive manufacturing[J]. Journal of Materials Processing Technology, 2020, 283: 116723. |