Multi-architecture Design Method for Landing Gear System Based on Domain Specific Modeling
WU Shouxuan1,2,3, WANG Guoxin1,2, LIANG Zan4, ZHANG Tao4, QI Zhenqiang4, LU Jinzhi5, YAN Yan1,2, GONG Yihui1,2, ZHANG Haoxuan1,6, ZHANG Zhen1,6
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081; 2. Key Laboratory of Industry Knowledge & Data Fusion Technology and Application of Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081; 3. Department of Informatics, University of Oslo, Oslo 0373, Norway; 4. Beijing Institute of Space System Engineering, Beijing 100076; 5. School of Aeronautical Science and Engineering, Beihang University, Beijing 100191; 6. Yangtze Delta Region Institute of Beijing Institute of Technology, Jiaxing 314019
WU Shouxuan, WANG Guoxin, LIANG Zan, ZHANG Tao, QI Zhenqiang, LU Jinzhi, YAN Yan, GONG Yihui, ZHANG Haoxuan, ZHANG Zhen. Multi-architecture Design Method for Landing Gear System Based on Domain Specific Modeling[J]. Journal of Mechanical Engineering, 2025, 61(19): 273-289.
[1] 安红辉. 飞机起落架落震试验技术研究[D]. 南京:南京航空航天大学,2010. AN Honghui. Technology research of an aircraft landing gear drop test [D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2010. [2] 王文强. 某临近空间飞行器着陆装置设计[D]. 南京:南京航空航天大学,2012. WANG Wenqiang. Landing gear design and analysis for a near spacecraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2010. [3] 石锦. 分布式电推进通用飞机总体设计技术研究[D]. 厦门:厦门大学,2022. SHI Jin. Research on the conceptual design technology of distributed electric propulsion general aircraft[D]. Xiamen:Xiamen University,2022. [4] 张志鹏. 主起落架双侧撑杆三维收放机构动态特性研究[D]. 南京:南京航空航天大学,2022. ZHANG Zhipeng. Research on dynamic characteristics of three-dimensional retracting and retracting mechanism of the double struts of main landing gear[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2021. [5] 赖兰腾. 基于Modelica的飞机起落架收放系统动态特性与故障特性仿真分析[D]. 武汉:华中科技大学,2021. LAI Lanteng. Simulation and analysis of dynamic and fault characteristics of landing gear extension and retraction system based on Modelica[D]. Wuhan:Huazhong University of Science & Technology,2021. [6] 苏永涛. 某型飞机起落架收放机构运动可靠性分析与仿真研究[D]. 沈阳:东北大学,2021. SU Yongtao. Research on kinematic reliability analysis and simulation of landing gear retraction and extension mechanism of aircraft[D]. Shenyang:Northeastern University,2021. [7] 陈小龙. 飞机起落架系统落震动力学建模与响应分析[D]. 汉中:陕西理工大学,2024. CHEN Xiaolong. Aircraft landing gear system drop shock dynamics modeling response analysis[D]. Hanzhong:Shaanxi University of Technology,2024. [8] 尹瑞新. 某型电动飞机前摇臂式起落架动力学仿真与落震试验研究[D]. 沈阳:沈阳航空航天大学,2023. YIN Ruixin. Research on dynamics simulation and drop shock test of nose articulated landing gear of a certain type of electric aircraft[D]. Shenyang:Shenyang Aerospace University,2023. [9] 汪瑞. 民机起落架着陆缓冲半主动控制方法研究[D]. 南京:南京航空航天大学,2021. WANG Rui. Research on semi-active control method of civil aircraft landing gear's landing buffer[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2021. [10] 孟清河,冯广,金军,等. 起落架系统技术体系构建研究[J]. 航空科学技术,2019,30(12):66-71. MENG Qinghe,FENG Guang,JIN Jun,et. al. Study on the technical architecture of landing gear system[J]. Aeronautical Science & Technology,2019,30(12):66-71. [11] 胡炳涛,冯毅雄,刘继红,等. 面向“互联网+”定制产品的智能适应性设计研究[J]. 机械工程学报,2023,59(12):109-125. HU Bingtao,FENG Yixiong,LIU Jihong,et. al. Research on intelligent adaptive design for “Internet+” customized products[J]. Journal of Mechanical Engineering,2023,59(12):109-125. [12] 王昊琪,李浩,文笑雨. 基于本体的公理化系统设计语义建模与推理规则[J]. 机械工程学报,2021,57(5):205-221. WANG Haoqi,LI hao,WEN Xiaoyu. Ontology-based axiomatic system design semantic modeling and reasoning rules[J]. Journal of Mechanical Engineering,2021,57(5):205-221. [13] 汤超,方俊伟,谢陵,等. MBSE在民机起落架系统设计中的应用[J]. 民用飞机设计与研究,2015(3):56-60. TANG Chao,FANG Junwei,XIE Ling,et al. Application of MBSE method during landing gear system design for civil aircraft[J]. Civil Aircraft Design & Research,2015(3):56-60. [14] 康文文,李浩敏. 基于模型的飞机系统架构多视图表达方法[J]. 系统工程与电子技术,2021,43(11):3266-3277. KANG Wenwen,LI Haomin. Multi-view representation method of aircraft system architecture based on model[J]. Systems Engineering and Electronics,2021,43(11):3266-3277. [15] 赵良玉,叶俊杰,何琪,等. 基于MBSE的民机起飞场景仿真[J]. 系统仿真学报,2021,33(10):2499-2510. ZHAO Liangyu,YE Junjie,HE Qi,et al. Simulation of civil aircraft takeoff scenario based on MBSE[J]. Journal of System Simulation,2021,33(10):2499-2510. [16] 海晓航. 基于MBSE的民机起落架系统建模与仿真分析[D]. 南京:南京航空航天大学,2019. HAI Xiaohang. Modeling and validation of civil aircraft landing gear based on MBSE [D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2019. [17] LI L,SOSKIN N L,JBARA A,et al. Model-based systems engineering for aircraft design with dynamic landing constraints using object-process methodology[J]. IEEE Access,2019,7: 61494-61511. [18] LEVI-SOSKIN N,JBARA A,DORI D. The model fidelity hierarchy:from text to conceptual,computational,and executable model[J]. IEEE Systems Journal,2020,15(1): 1287-1298. [19] WILLICH F,WOLFF C,SUTOR MA A,JAHN, U,STAMPA M. Model-based systems engineering of an active oleo-pneumatic damper for a cs-23 general aviation aircraft landing gear[C]//2021 IEEE European Technology and Engineering Management Summit (E-TEMS),March 18-20,2021,Dortmund, Germany. Dortmund, Germany:IEEE, 2021:1-6. [20] KRUPA G P. Application of agile model-based systems engineering in aircraft conceptual design[J]. The Aeronautical Journal,2019,123(1268): 1561-1601. [21] JEYARAJ A K,LISCOUËT-HANKE S. A safety-focused system architecting framework for the conceptual design of aircraft systems[J]. Aerospace,2022,9(12): 791. [22] BRYANT B R,GRAY J,MERNIK M. Domain-specific software engineering[C]//FSE/SDP Workshop on the Future of Software Engineering Research, November 7,2010,Santa Fe,New Mexico,USA. New York:ACM, 2010:1-6. [23] 孙胜楠. 基于MBSE的燃气轮机系统建模及仿真方法研究[D]. 上海:上海交通大学,2022. SUN Shengnan. Research on modeling and simulation of gas turbine system based on MBSE[D]. Shanghai:Shanghai Jiao Tong University,2022. [24] 鲁金直,王国新,阎艳,等. 基于多架构建模语言的系统工程建模方法[J]. 系统工程学报,2023,38(02):146-160. LU Jinzhi,WANG Guoxin,YAN Yan,et al. System engineering modeling methodology based on multi-architectural modeling language[J]. Journal of System Engineering,2023,38(02): 146-160. [25] KERN H,HUMMEL A,KÜHNE S. Towards a comparative analysis of meta-metamodels[C]//Co-Located Workshops on DSM'11,TMC'11,AGERE! 2011,AOOPES'11,NEAT'11,& VMIL'11,October 23-24,2011,Wellington,New Zealand. New York:ACM,2011:7-12. [26] KONE NY M,TAHA W,BARTHA F,et al. Enclosing the behavior of a hybrid automaton up to and beyond a Zeno point[J]. Nonlinear Analysis Hybrid Systems,2016,20:1-20. [27] GUO J M,WANG G X,LU J Z,A general modeling language supporting architecture driven and code generation (part 2)[C]//30th Annual INCOSE International Symposium,July 18-23,2020,Cape Town,South Africa. Cape Town,South Africa:INCOSE,2020: 1460-1473. [28] DING J,RENIERS M.,LU J Z,et al. Integration of modeling and verification for system model based on karma language[C]//18th ACM SIGPLAN International Workshop on Domain-Specific Modeling,October 18,2021,Chicago,IL,USA. New York,NY:ACM,2021:41-50. [29] 钱康安,潘晴,陈嘉宁,等. 起落架着陆过程建模与多目标参数优化设计[J]. 机床与液压,2023,51(14):86-93. QIAN Kangan,PAN Qing,CHEN Jianing,et al. Landing process modeling and multi-obiective parameter optimization design[J]. Machine Tool & Hydraulics,2023,51(14):86-93. [30] CHEN J Q,WANG G X,LU J Z,et al. Model-based system engineering supporting production scheduling based on satisfiability modulo theory[J]. Journal of Industrial Information Integration,2022,27:100329.