[1] TIMMINS A R, HEUSER R E. A study of first day space malfunctions[R]. NASA Technical Note D-6474, 1971. [2] 马兴瑞, 韩增尧. 卫星与运载火箭力学环境分析方法及试验技术[M]. 北京: 科学出版社, 2014. MA Xingrui, HAN Zengyao. Analysis methods and test techniques for mechanical environments of satellites and launch vehicles[M]. Beijing: Science Press, 2014. [3] CHEN Yan, GAO Qiang, GUAN Zhenqun. Self-loosening failure analysis of bolt joints under vibration considering the tightening process[J]. Shock and Vibration, 2017, 2017(1): 2038421. [4] LIM J H. A correlation study of satellite finite element model for coupled load analysis using transmissibility with modified correlation measures[J]. Aerospace Science and Technology, 2014, 33(1): 82-91. [5] 宫涛, 杨建华, 庄絮竹, 等. 螺栓松动故障监测实验研究综述[J]. 机械设计与制造, 2024(2): 354-363. GONG Tao, YANG Jianhua, ZHUANG Xuzhu, et al. Review of experimental research on bolt looseness monitoring[J]. Machinery Design and Manufacture, 2024(2): 354-363. [6] MITRA M, GOPALAKRISHNAN S. Guided wave based structural health monitoring: A review[J]. Smart Materials and Structures, 2016, 25(5): 053001. [7] 何存富, 郑明方, 吕炎, 等. 超声导波检测技术的发展、应用与挑战[J]. 仪器仪表学报, 2016, 37(8): 1713-1735. HE Cunfu, ZHENG Mingfang, LÜ Yan, et al. Development, application and challenges in ultrasonic guided waves testing technology[J]. Chinese Journal of Scientific Instrument, 2016, 37(8): 1713-1735. [8] 叶亮, 张有忱, 丁克勤, 等. 基于压电阻抗法的机械螺栓组松动监测及识别[J]. 科学技术与工程, 2013, 13(18): 5172-5176. YE Liang, ZHANG Youchen, DING Keqin, et al. Monitoring and identification of mechanical bolt group loosening based on the piezoelectric impedance method[J]. Science Technology and Engineering, 2013, 13(18): 5172-5176. [9] 国防科学技术工业委员. QJ1579A-2005航天器系统级振动试验方法[S]. 北京: 中国航天标准化研究所, 2006. Commission of Science, Technology and Industry for National Defense. QJ1579A-2005 Vibration test methods for spacecraft systems[S]. Beijing: China Aerospace Standardization Institute, 2006. [10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB_T 34516-2017_航天器振动试验方法[S], 北京: 中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 34516-2017 vibration test method for spacecraft[S]. Beijing: Standards Press of China, 2017. [11] 朱凤梧, 金恂叔, 施修明, 等. 航天器产品力学环境试验要求[R]. 北京: 中国航天科技集团第五研究院, 2005. ZHU Fengwu, JIN Xunshu, SHI Xiuming, et al. Mechanical environmental test requirements for spacecraft products[R]. Beijing: The Fifth Academy of China Aerospace Science and Technology Corporation, 2005. [12] 程长明, 彭志科, 孟光. 基于NARMAX模型和NOFRF结构损伤检测的实验研究[J]. 动力学与控制学报, 2013, 11(1): 89-96. CHENG Changming, PENG Zhike, MENG Guang. Experimental study on structural damage detection based on NARMAX model and NOFRF[J]. Journal of Dynamics and Control, 2013, 11(1): 89-96. [13] LIU Yang, ZHAO Yulai, LI Jintao, et al. Application of weighted contribution rate of nonlinear output frequency response functions to rotor rub-impact[J]. Mechanical Systems and Signal Processing, 2020, 136(1): 106518. [14] SUZUKI B R, ZHU Yunpeng, LANG Ziqiang. The analysis of nonlinear systems in the frequency domain using nonlinear output frequency response functions[J]. Automatica, 2018, 94: 452-457. [15] PENG ZHike, LANG Ziqiang, BILLINGS S A. Crack detection using nonlinear output frequency response functions[J]. Journal of Sound Vibration, 2007, 301(3-5): 777-788. [16] ZHU Yunpeng, LANG Ziqiang, MAO Hanling, et al. Nonlinear output frequency response functions: A new evaluation approach and applications to railway and manufacturing systems' condition monitoring[J]. Mechanical Systems and Signal Processing, 2022, 163: 108179. [17] BALDACCHINO T, ANDERSON S R, KADIRKAMANATHAN V. Computational system dentification for Bayesian NARMAX modelling[J]. Automatica, 2013, 49: 2641-2651. [18] JACOBS W R, BALDACCHINO T, DODD T J, et al. Sparse Bayesian nonlinear system dentification using variational inference[J]. IEEE Transactions on Automatic Control, 2018, 63(12): 4172-4187. [19] SUNG Y, BEAUDOIN F, NORRIS L M, et al. Non-gaussian noise spectroscopy with a superconducting qubit sensor[J]. Nature Communications, 2019, 10: 3715. [20] 李太平, 翁海宽, 江浩, 等. 预紧力对系统频率漂移的影响[J]. 航天器环境工程, 2017, 34(6): 636-641. LI Taiping, WENG Haikuan, JIANG Hao, et al. Influence of preload force on system frequency drift[J]. Spacecraft Environment Engineering, 2017, 34(6): 636-641. [21] 石宏理, 蔡远利, 邱祖廉. 一种基于小波分解的非线性系统辨识的新方法[J]. 信息与控制, 2004(5): 554-559. SHI Hongli, CAI Yuanli, QIU Zulian. A new method for nonlinear system identification based on wavelet decomposition[J]. Information and Control, 2004(5): 554-559. [22] YU Changshuai, ZHU Yunpeng, LUO Haitao, et al. Design assessments of complex systems based on design oriented modelling and uncertainty analysis[J]. Mechanical Systems and Signal Processing, 2023, 188(11): 109988. [23] BILLINGS S A, CHEN S, KORENBERG M J. Identification of MIMO non-linear systems using a forward-regression orthogonal estimator[J]. International Journal of Control, 1989, 49(6): 2157-2189. [24] BILLINGS S A, KORENBERG M J, CHEN S, Identification of non-linear output-affine systems using an orthogonal least-squares algorithm, International[J]. Journal of Systems Science, 1988, 19(8): 1559-1568. [25] LIU Yang, ZHAO Yulai, LI Jintao, et al. Application of weighted contribution rate of nonlinear output frequency response functions to rotor rub-impact[J].Mechanical Systems and Signal Processing, 2020, 136(1): 106518. [26] AMERINI F, BARBIERI E, MEO M, et al. Detecting loosening/tightening of clamped structures using nonlinear vibration techniques[J]. Smart Materials and Structures, 2010, 19(8): 085013. [27] 曹芝腑, 谭志勇, 姜东, 等. 基于时频分析的高温振动环境螺栓连接件松动判别[J]. 振动与冲击, 2019, 38(17): 205-210. CAO Zhifu, TAN Zhiyong, JIANG Dong, et al. Looseness identification of bolted connections in high-temperature vibration environment based on time-frequency analysis[J]. Journal of Vibration and Shock, 2019, 38(17): 205-210. [28] ZHU Qingyu, HAN Qingkai, LIU Jinguo. Topological optimization design on constrained layer damping treatment for vibration suppression of thin-walled structures via improved BESO method[J], Aerospace Science and Technology, 2023, 42(5): 108600. |