Study on Digital Magnetic Control Power Supply for Deep Penetration K-TIG Assisted Welding and Toughening Mechanism
ZHAN Jiatong1, SHI Yonghua1, LIU Zhizhong2, YE Xiongyue2, LIANG Zhuoyong1
1. School of Mechanical Engineering, South China University of Technology, Guangzhou 510640; 2. Guangdong ForeWeld Corporation Limited, Guangzhou 510700
ZHAN Jiatong, SHI Yonghua, LIU Zhizhong, YE Xiongyue, LIANG Zhuoyong. Study on Digital Magnetic Control Power Supply for Deep Penetration K-TIG Assisted Welding and Toughening Mechanism[J]. Journal of Mechanical Engineering, 2025, 61(18): 86-97.
[1] 陈金荣,石永华,占爱文. 纵向磁场对K-TIG焊接电弧形态及焊缝成形的影响[J]. 热加工工艺,2023,52(5):25-30. CHEN Jinrong,SHI Yonghua,ZHAN Aiwen. Effect of longitudinal magnetic field on arc shape and weld formation of K-TIG welding[J]. Hot Working Technology,2023,52(5):25-30. [2] XU T,SHI Y H,JIANG Z X,et al. Improvement of cryogenic toughness for 9% Ni steel keyhole TIG butt- welded joints with a Ni interlayer[J]. Materials Science and Engineering:A,2022,835:1-17. [3] CUI S W,SHI Y H,SUN K,et al. Microstructure evolution and mechanical properties of keyhole deep penetration TIG welds of S32101 duplex stainless steel[J]. Materials Science and Engineering A,2018,709:214-222. [4] CUI S W,SHI Y H,ZHU T,et al. Microstructure,texture,and mechanical properties of Ti-6Al-4V joints by K-TIG welding[J]. Journal of Manufacturing Processes,2019,37:418-424. [5] SU L H,FEI Z Y,DAVIS B,et al. Digital image correlation study on tensile properties of high strength quenched and tempered steel weld joints prepared by K-TIG and GMAW[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2021,827:1-15. [6] 段士华. 3mm厚高强钢K-TIG焊接工艺及电弧特性研究[D]. 哈尔滨:哈尔滨工业大学,2022. DUAN Shihua. Research on process and arc characteristics in K-TIG welding of high strength steel with thickness of three millimeters[D]. Harbin:Harbin Institute of Technology,2022. [7] Cui Y X,Shi Y H,Ning Q,et al. Investigation into keyhole-weld pool dynamic behaviors based on HDR vision sensing of real-time K-TIG welding process through a steel/glass sandwich[J]. Advances in Manufacturing,2021,9(1):136-144. [8] Cui Y X,Kang Y P,SHI Y H,et al. Investigation into the arc profiles and penetration ability of axial magnetic field-enhanced K-TIG welding by means of a specially designed sandwich[J]. Journal of Manufacturing Processes,2021,68:32-41. [9] 张抱日,顾盛勇,石永华. 基于焊缝熔透检测的机器人深熔K-TIG焊接系统[J]. 机械工程学报,2019,55(17):14-21. ZHANG Baori,GU Shengyong,SHI Yonghua. Robotic deep penetration K-TIG welding system based on weld penetration detection[J]. Journal of Mechanical Engineering,2019,55(17):14-21. [10] Shi Y H,Wang Z S,Liang Z Y,et al. A welding seam tracking algorithm adaptive to variable groove type:An interactive segmentation passive vision method[J]. Optics & Laser Technology,2025,181:111861. [11] Lin Z L,Shi Y H,Wang Z S,et al,Intelligent seam tracking of an ultranarrow gap during K-TIG welding:A hybrid CNN and adaptive ROI operation algorithm[J]. IEEE Transactions on Instrumentation and Measurement,2023,72:5001314. [12] Chen Y K,Shi Y H,Cui Y X,et al. Narrow gap deviation detection in Keyhole TIG welding using image processing method based on Mask-RCNN model[J]. The International Journal of Advanced Manufacturing Technology,2021,112:2015-2025. [13] WANG Y P,QI B J,CONG B Q,et al. Keyhole welding of AA2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding[J]. Journal of Manufacturing Processes,2018,34:179-186. [14] 齐铂金,杨舟,杨明轩,等. 超高频脉冲GTAW工艺特性分析[J]. 机械工程学报,2016,52(2):26-32. QI Bojin,YANG Zhou,YANG Mingxuan,et al. Analysis on characteristic of ultra high frequency pulsed gas tungsten arc welding process[J]. Journal of Mechanical Engineering,2016,52(2):26-32. [15] 姜自昊,肖宏,曾才有,等. 中厚铝合金DP-VPTIG焊接深熔小孔作用机制研究[J/OL]. 机械工程学报,2024:1-8[2024-12-20].http://kns.cnki.net/kcms/detail/11.2187.TH.20240722.1242.008.html. JIANG Zihao,XIAO Hong,ZENG Caiyou,et al. Study on the keyhole effects in DP-VPTIG welding of medium-thick aluminum alloys[J]. Journal of Mechanical Engineering,2024:1-8.[2024-12-20]. http://kns.cnki.net/ kcms/detail/11.2187.TH.20240722.1242.008.html. [16] 张刚,徐梓龙,石玗,等. 双频调制脉冲TIG打底焊电弧-熔池行为分析[J]. 机械工程学报,2023,59(12):245-252. ZHANG Gang,XU Zilong,SHI Yu,et al. Analysis of arc-weld pool behavior of double-frequency modulated pulse TIG root pass welding[J]. Journal of Mechanical Engineering,2023,59(12):245-252. [17] 王振民,唐嘉健,潘晓浩,等. 全数字大功率交流脉冲埋弧焊接电源[J]. 机械工程学报,2023,59(2):96-103. WANG Zhenmin,TANG Jiajian,PAN Xiaohao,et al. Digital high-power AC-pulse submerged arc welding power source[J]. Journal of Mechanical Engineering,2023,59(2):96-103. [18] LIU Z M,FANG Y X,CUI S L,et al. Sustaining the open keyhole in slow-falling current edge during K-TIG process:Principle and parameters[J]. International Journal of Heat and Mass Transfer,2017,112:255-266. [19] 赵建强,石永华,詹家通,等. 外加轴向磁场K-TIG横焊电弧形态及焊缝成形[J]. 焊接,2023(4):1-6. ZHAO Jianqiang,SHI Yonghua,ZHAN Jiatong,et al. Transverse welding arc shape and joint formation in K-TIG welding under axial magnetic field[J]. Welding & Joining,2023(4):1-6. [20] 肖磊,樊丁,黄健康. 交变磁场作用下的GTAW非稳态电弧数值模拟[J]. 机械工程学报,2018,54(16):79-85. XIAO Lei,FAN Ding,HUANG Jiankang. Numerical simulation of unsteady arc in GTAW with alternate axial magnetic field[J]. Journal of Mechanical Engineering,2018,54(16):79-85. [21] XIAO L,FAN D,HUANG J K. Numerical study on arc plasma behaviors in GMAW with applied axial magnetic field[J]. Journal of the Physical Society of Japan,2019,88:074502. [22] XIAO L,FAN D,HUANG J K. Tungsten cathode-arc plasma-weld pool interaction in the magnetically rotated or deflected gas tungsten arc welding configuration[J]. Journal of Manufacturing Processes,2018,32:127-137. [23] LIU S,LIU Z M,ZHAO X C,et al. Influence of cusp magnetic field configuration on K-TIG welding arc penetration behavior[J]. Journal of Manufacturing Processes,2020,53:229-237. [24] XU T,Shi Y H,Jiang Z X,et al. An extraordinary improvement in cryogenic toughness of K-TIG welded 9Ni steel joint assisted by alternating axial magnetic field[J]. Journal of Materials Research and Technology,2023,25:3071-3077. [25] 任永锦. 基于80C196KC控制的交变磁控电源研究[D].兰州:兰州理工大学,2019. REN Yongjin. Research on alternating current magnetron power supply based on 80C196KC[D]. Lanzhou:Lanzhou University of Technology,2019. [26] 杜茵茵. 交变磁控电源研制及优化设计[D]. 兰州:兰州理工大学,2022. DU Yinyin. Development and optimal design of alternating magnetron power supply[D]. Lanzhou:Lanzhou University of Technology,2021. [27] WU K Y,WANG Y F,CAO X W,et al. GMAW power supply based on parallel full-bridge LLC resonant converter[J]. International Journal of Electronics,2022,109(12):2135-2157. [28] WU K Y,HUANG H,CHEN Z W,et al. Novel and simplified implementation of digital high-power pulsed MIG welding power supply with LLC resonant converter[J]. Circuit World,2022,50(1):54-66. [29] WU K Y,LIU Z T,CHEN Q R,et al. Digital MIG welding power supply system based on bridgeless PFC and LLC[J]. Electrical Engineering,2024,10(1):1-16. [30] XU T,SHI Y H,CUI Y X,et al. Effects of magnetic fields in arc welding,laser welding,and resistance spot welding:A review[J]. Advanced Engineering Materials,2023,25(5):1-22.