[1] 国防科学技术工业委员会. HB/Z 223.21-2003. 飞机装配工艺第21部分, 复合材料的铆接[S]. 北京: 国防科学技术工业委员会, 2003. National Defense Science Technology and Industry Commission. HB/Z 223.21-2003. Machine assembly process-Part 21, riveting of composite materials[S]. Beijing: National Defense Science Technology and Industry Commission, 2003. [2] 于海山, 李原, 张开富.飞机装配顺序的多目标综合评价方法研究[J]. 西北工业大学学报, 2006, 24(6): 808-812. YU Haishan, LI Yuan, ZHANG Kaifu. Improving multi-objective evaluation of aircraft assembly sequences[J]. Journal of Northwestern Polytechnical University, 2006, 24(6): 808-812. [3] El-SISI A, SALLAM H, SALIM H, et al. Structural behavior of hybrid CFRP/steel bolted staggered joints[J]. Construction and Building Materials, 2018, 190: 1192-1207. [4] RUI Y N, LU L, TAO S, et al. Simulation-based parameter optimization of friction forge riveting for AA6061-T6 and TA2 with TA2 titanium rivet[J]. Journal of Manufacturing Processes, 2022, 83: 1-13. [5] 武涛. 复合材料多钉干涉连接应力分布及损伤萌生研究[D]. 西安: 西北工业大学, 2017. WU Tao. Stress distribution and damage initiation analysis of composite multi-pin joints with interference fit[D]. Xi'an: Northwestern Polytechnical University, 2017. [6] ZHAO J, SU H, WU C. The effect of ultrasonic vibration on stress-strain relations during compression tests of aluminum alloys[J]. Journal of Materials Research and Technology, 2020, 9(6): 14895-14906. [7] LIANG J, LI H, QI L, et al. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion[J]. Journal of Alloys and Compounds, 2017, 728: 282-288. [8] MAO Q, COUTRIS N, RACK H, et al. Investigating ultrasound-induced acoustic softening in aluminum and its alloys[J]. Ultrasonics, 2020, 102(2): 106005. [9] SIEGERT K, ULMER J. Superimposing ultrasonic waves on the dies in tube and wire drawing[J]. Journal of Engineering Materials and Technology, 2001, 123(4): 517-523. [10] ZHOU H, CUI H, QIN Q H. Influence of ultrasonic vibration on the plasticity of metals during compression process[J]. Journal of Materials Processing Technology, 2018, 251: 146-159. [11] BONTO A, TIOZON R, SREENIVASULU N, et al. Impact of ultrasonic treatment on rice starch and grain functional properties: A review[J]. Ultrasonics Sonochemistry, 2020, 71: 105383. [12] 解振东. 镁/铝合金超声振动辅助塑性成形的材料变形行为与超声作用机制研究[D]. 济南: 山东大学, 2019. XIE Zhendong. Study on materials deformation behaviors and ultrasonic acting mechanisms of ultrasonic vibration assisted Mg/Al alloys metal forming[D]. Jinan: Shandong University, 2019. [13] 王志亮. 超声振动辅助塑性变形行为及铆接工艺应 用[D]. 济南: 山东大学, 2020. WANG Zhiliang. Ultrasonic vibration-assisted plastic deformation behavior and application in riveting process[D]. Jinan: Shandong University, 2020. [14] 黄志祥. 基于超声振动辅助的钛合金铆钉铆接技术研究[D]. 南京: 南京航空航天大学, 2016. HUANG Zhixiang. Research on ultrasonic vibration aided riveting technology for titaniu-alloy rivet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. [15] ZHANG L, CHEN W, WANG Z, et al. Effect of ultrasonic amplitude and riveting speed on mechanical properties of Ti-45Nb riveted lap joints[J]. Engineering Failure Analysis, 2024, 163: 108515. [16] WANG X, QI Z, CHEN W. Investigation of Ti-45Nb alloy's mechanical and microscopic behaviors under transverse ultrasonic vibration-assisted compression[J]. Materials Science and Engineering: A, 2022, 832, 142401. [17] WANG X, SHI Y, PAN H, CHEN Y. Experimental investigation and quantitative prediction in interference-fit size of CFRP riveted joints under a transversal ultrasonic vibration-assisted riveting[J]. Scientific Reports, 2023, 13: 14408. [18] WANG X, QI Z, CHEN W, et al. Study on the effects of transverse ultrasonic vibration on deformation mechanism and mechanical properties of riveted lap joints[J]. Ultrasonics, 2021, 116: 106452. [19] YAO Z, MEI D, CHEN Z. Modeling of metallic surface topography modification by high-frequency vibration[J]. Journal of Sound and Vibration, 2016, 363: 258-271. [20] 王星星, 朱红萍. CFRP叠层横向超声振动辅助铆接技术[J]. 锻压技术, 2024, 49(1): 154-164. WANG Xingxing, ZHU Hongping. Transverse ultrasonic vibration assisted riveting technology of CFRP laminates[J]. Forging and Stamping Technology, 2024, 49(1): 154-164. [21] FANG G, GAO X, CHEN J, et al. Effects of loading cycles on fatigue residual strength for 2D needled C/SiC composites[J]. Acta Materiae Compositae Sinica, 2016, 33: 149-154. |