Modeling of Multi-energy Field and Regulation Optimization for Electric Discharge Assisted Milling (EDAM) of Titanium Alloys
WEI Rong1, XU Moran1,2, LI Changping1, LI Shujian1, LI Pengnan1
1. School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan 411201; 2. School of Mechanical Engineering, Yeungnam University, Taegu 200240, South Korea
WEI Rong, XU Moran, LI Changping, LI Shujian, LI Pengnan. Modeling of Multi-energy Field and Regulation Optimization for Electric Discharge Assisted Milling (EDAM) of Titanium Alloys[J]. Journal of Mechanical Engineering, 2024, 60(9): 393-409.
[1] PESODE P,BARVE S. A review—metastable β titanium alloy for biomedical applications[J]. Journal of Engineering and Applied Science,2023,70(1):1-36. [2] 张翔宇,路正惠,彭振龙,等. 钛合金的高质高效超声振动切削加工[J]. 机械工程学报,2021,57(5):133-147. ZHANG Xiangyu,LU Zhenghui,PENG Zhenlong,et al. High quality and high efficiency ultrasonic vibration cutting of titanium alloy[J]. Journal of Mechanical Engineering,2021,57(5):133-147. [3] 王兵,刘战强,梁晓亮,等. 钛合金高质高效切削加工刀具技术[J]. 金属加工(冷加工),2022(3):1-5,13. WANG Bing,LIU Zhanqiang,LIANG Xiaoliang,et al. High quality and high efficiency cutting tool technology of titanium alloy [J]. Metal Working (Metal Cutting),2022(3):1-5,13. [4] SHAMS O A,PRAMANIK A,CHANDRATILLEKE T T. Thermal-assisted machining of titanium alloys[J]. Advanced Manufacturing Technologies:Modern Machining,Advanced Joining,Sustainable Manufacturing,2017:49-76. [5] LIU J,LI Y,CHEN Y,et al. A review of low-temperature plasma assisted machining:From mechanism to application[J]. Front. Mech. Eng.,2023,18:18. [6] LI C P,XU M R,YU Z,et al. Electrical discharge-assisted milling for machining titanium alloy[J]. Journal of Materials Processing Technology,2020,285:116785. [7] UPADHYAY V,JAIN P K,MEHTA N K. Machinability studies in hot machining of Ti-6Al-4V alloy[C]//Advanced Materials Research. Trans Tech Publications Ltd,2013,622:361-365. [8] GINTA T L,AMIN A K M N. Thermally-assisted end milling of titanium alloy Ti-6Al-4V using induction heating[J]. International Journal of Machining and Machinability of Materials,2013,14(2):194-212. [9] RASHID R A R,SUN S,WANG G,et al. An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy[J]. International Journal of Machine Tools and Manufacture,2012,63:58-69. [10] SUN S,BRANDT M,BARNES J E,et al. Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti-6Al-4V alloy[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2011,225(9):1512-1527. [11] XU M R,LI C P,KURNIAWAN R,et al. Study on surface integrity of titanium alloy machined by electrical discharge-assisted milling[J]. Journal of Materials Processing Technology,2022,299:117334. [12] GINTA T L,AMIN A,RADZI H,et al. Tool life prediction by response surface methodology in end milling titanium alloy Ti-6Al-4V using uncoated WC-Co inserts[J]. European Journal of Scientific Research,2009,28(4):533-541. [13] 马峰,黄顺虎,刘培基,等. 面向功率和制孔质量的CFRP钻削工艺参数多目标优化方法[J]. 机械工程学报,2023,59(11):290-299. MA Feng,HUANG Shunhu,LIU Peiji,et al. Multi-objective optimization method of CFRP drilling process parameters for power and hole quality[J]. Journal of Mechanical Engineering,2023,59(11):290-299. [14] BYIRINGIRO J B,KIM M Y,KO T J. Process modeling of hybrid machining system consisted of electro discharge machining and end milling[J]. The International Journal of Advanced Manufacturing Technology,2012,61:1247-1254. [15] LI C P,HUANG L,XU M R,et al. Processing mechanism of electrical discharge-assisted milling titanium alloy based on 3D thermal-mechanical coupling cutting model[J]. Journal of Manufacturing Processes,2022,78:107-119. [16] SINGH M,SAXENA P,RAMKUMAR J,et al. Multi-spark numerical simulation of the micro-EDM process:An extension of a single-spark numerical study[J]. The International Journal of Advanced Manufacturing Technology,2020,108:2701-2715. [17] SOMASHEKHAR K P,PANDA S,MATHEW J,et al. Numerical simulation of micro-EDM model with multi-spark[J]. The International Journal of Advanced Manufacturing Technology,2015,76:83-90. [18] DILIP D G,JOHN G,PANDA S,et al. Finite-volume-based conservative numerical scheme in cylindrical coordinate system to predict material removal during micro-EDM on Inconel 718[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,42:1-18. [19] WEI R,XU M R,LI C P,et al. Cutting force modeling in the electrical discharge assisted milling of Ti-6Al-4V in a multi-hybrid energy field based on finite volume method[J]. Journal of Materials Processing Technology,2023,311:117805. [20] XU M R,WEI R,LI C P,et al. Comprehensive study on the cutting force modeling and machinability of high frequency electrical discharge assisted milling process using a novel tool[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2023,10,381-408. [21] XU M R,WEI R,LI C P,et al. High-frequency electrical discharge assisted milling of Inconel 718 under copper-beryllium bundle electrodes[J]. Journal of Manufacturing Processes,2023,85:1116-1132. [22] KURIACHEN B,VARGHESE A,SOMASHEKHAR K P,et al. Three-dimensional numerical simulation of microelectric discharge machining of Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology,2015,79:147-160. [23] KURIACHEN B,MATHEW J. Spark radius modeling of resistance-capacitance pulse discharge in micro-electric discharge machining of Ti-6Al-4V:An experimental study[J]. The International Journal of Advanced Manufacturing Technology,2016,85:1983-1993. [24] MURALI M S,YEO S H. Process simulation and residual stress estimation of micro-electrodischarge machining using finite element method[J]. Japanese Journal of Applied Physics,2005. [25] 李常平,黄磊,李树健,等. Cr12MoV钢电火花辅助铣削实验研究[J]. 宇航材料工艺,2022,52(6):44-51. LI Changping,HUANG Lei,LI Shujian,et al. Experimental study on EDM-assisted milling of Cr12MoV steel[J]. Aerospace Material Process,2022,52(6):44-51. [26] ARMAREGO E J A,BROWN R H. The machining of metals[M]. Prentice-Hall Inc,Englewood Cliffs,N. J.,1969. [27] WALDORF D J,DEVOR R E,KAPOOR S G. A slip-line field for ploughing during orthogonal cutting[J]. J. Manuf. Sci. Eng.,1998,120:693-699. [28] WU X,LIU L,DU M,et al. Experimental study on the minimum undeformed chip thickness based on effective rake angle in micro milling[J]. Micromachines,2020,11(10):924. [29] DUDZINSKI D,MOLINARI A. A modelling of cutting for viscoplastic materials[J]. International Journal of Mechanical Sciences,1997,39(4):369-389. [30] ZHAO X F,YANG Y,HE L,et al. Experiment and modeling of milling force based on tool edge preparation[J]. Experimental Techniques,2021:1-13. [31] MERCHAN M E. Mechanics of the metal cutting process I[J]. Journal of Applied Physics,1945,16:267-318. [32] HANG Z,HAO Z,RONG Y,et al. Analytical modeling of cutting forces considering material softening effect in laser-assisted milling of AerMet100 steel[J]. International Journal of Advanced Manufacturing Technology,2021,113:247-260. [33] TOUNSI N,VINCENTI J,OTHO A,et al. From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation[J]. International Journal of Machine Tools and Manufacture,2002,42(12):1373-1383. [34] FENG Y,HUNG T P,LU Y T,et al. Analytical prediction of temperature in laser-assisted milling with laser preheating and machining effects[J]. The International Journal of Advanced Manufacturing Technology,2019,100:3185-3195. [35] BOOTHROYD G. Temperatures in orthogonal metal cutting[J]. Proceedings of the Institution of Mechanical Engineers,1963,177(1):789-810 [36] ZHAO X F,YANG Y,HE L,et al. Experiment and modeling of milling force based on tool edge preparation[J]. Experimental Techniques,2022,46:761-773. [37] 张立峰,王盛,王宁,等. 激光熔覆Ti-6Al-4V高速铣削切削力研究[J]. 机械科学与技术,2021,40(4):562-565. ZHANG Lifeng,WANG Sheng,WANG Ning,et al. Research on cutting force of laser cladding Ti-6Al-4V high speed milling[J]. Mechanical Science and Technology,2021,40(4):562-565. [38] PADMANABHAN T,KAMARAJ V,MAGWOOD J R L,et al. Experimental investigation on the operating variables of a near-field electrospinning process via response surface methodology[J]. Journal of Manufacturing Processes,2011,13(2):104-112. [39] ASILTÜRK I,NEŞELI S. Multi response optimization of CNC turning parameters via Taguchi method-based response surface analysis[J]. Measurement,2012,45(4):785-794.