Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (15): 231-245.doi: 10.3901/JME.2021.15.231
Previous Articles Next Articles
LIU Guangxin1,2, ZHANG Dinghua1,2, YAO Changfeng1,2
Received:
2020-08-11
Revised:
2020-12-18
Online:
2021-08-05
Published:
2021-11-03
CLC Number:
LIU Guangxin, ZHANG Dinghua, YAO Changfeng. Research Progress of the Microstructure on Machined Surface of Titanium Alloys[J]. Journal of Mechanical Engineering, 2021, 57(15): 231-245.
[1] 赵振业. 高强度合金应用与抗疲劳制造技术[J]. 航空制造技术, 2007(10):30-33. ZHAO Zhenye. High strength alloy application and anti-fatigue manufacturing technology[J]. Aeronautical Manufacturing Technology, 2007(10):30-33. [2] LIANG T, YAO C, REN J, et al. Effect of cutter path orientations on cutting forces, tool wear, and surface integrity when ball end milling TC17[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):1-14. [3] YAO C F, TAN L, REN J X, et al. Surface integrity and fatigue behavior for high-speed milling Ti-10V-2Fe-3Al titanium alloy[J]. Journal of Failure Analysis & Prevention, 2014, 14(1):102-112. [4] GINTING A, NOUARI M. Surface integrity of dry machined titanium alloys[J]. International Journal of Machine Tools and Manufacture, 2009, 49(3):325-332. [5] 杨振朝, 张定华, 姚倡锋, 等. TC4钛合金高速铣削参数对表面完整性影响研究[J]. 西北工业大学学报, 2009, 27(4):538-543. YANG Zhenchao, ZHANG Dinghua, YAO Changfeng, et al. Effects of high-speed milling parameters on surface integrity of TC4 titanium alloy[J]. Journal of Northwestern Polytechnical University, 2009, 27(4):538-543. [6] IBRAHIM G A, HARON C H C, GHANI J A. The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V ELI[J]. Journal of Applied Sciences, 2009, 9(1):121-127. [7] 杜随更, 吕超, 任军学, 等. 钛合金TC4高速铣削表面形貌及表层组织研究[J]. 航空学报, 2008(6):1710-1715. DU Suigeng, LÜ Chao, REN Junxue, et al. Study on surface morphology and microstructure of titanium alloy TC4 under high-speed milling[J]. Acta Aeronautica et Astronautica Sinica, 2008(6):1710-1715. [8] 谭靓, 张定华, 姚倡锋. 高速铣削参数对TC17钛合金表面变质层的影响[J]. 航空材料学报, 2017, 37(6):75-81. TAN Liang, ZHANG Dinghua, YAO Changfeng. Effect of high-speed milling parameters on surface metamorphic layer of TC17 titanium alloy[J]. Journal of Aeronautical Materials, 2017, 37(6):75-81. [9] LI B, ZHANG S, LI J, et al. Quantitative evaluation of mechanical properties of machined surface layer using automated ball indentation technique[J]. Materials Science and Engineering:A, 2020, 773:138717. [10] WANG Q, WANG Q, LIU Z, et al. Evolutions of grain size and micro-hardness during chip formation and machined surface generation for Ti-6Al-4V in high-speed machining[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(9-12):1725-1736. [11] MINGARD K P, ROEBUCK B, BENNETT E G, et al. Comparison of EBSD and conventional methods of grain size measurement of hardmetals[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(2):213-223. [12] KAI H, CHEN N, WANG C, et al. Method for determining crystal grain size by X-Ray diffraction[J]. Crystal Research & Technology, 2018, 53(2):1700157. [13] 李建萍, 张维. 金属材料晶粒大小测量方法的研究[J]. 南昌航空工业学院学报, 2000, 14(3):19-22. LI Jianping, ZHANG Wei. The reserch for the methods of measuring grain size of metal materals[J]. Journal of Nanchang Hangkong University, 2000, 14(3):19-22. [14] ROTELLA G, DILLON O W, UMBRELLO D, et al. The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(1-4):47-55. [15] VALERIE, RANDLE. Electron backscatter diffraction:Strategies for reliable data acquisition and processing[J]. Materials Characterization, 2009, 60(9):913-922. [16] LIANG X, LIU Z, WANG Q, et al. Tool wear-induced microstructure evolution in localized deformation layer of machined Ti-6Al-4V[J]. Journal of Materials Science, 2020, 55(8):3636-3651. [17] WANG Q, LIU Z. Plastic deformation induced nano-scale twins in Ti-6Al-4V machined surface with high speed machining[J]. Materials Science and Engineering:A, 2016, 675:271-279. [18] DAYMI A, BOUJELBENE M, AMARA A B, et al. Surface integrity in high speed end milling of titanium alloy Ti-6Al-4V[J]. Materials Science & Technology, 2011, 27(1):387-394. [19] CHE-HARON C H. Tool life and surface integrity in turning titanium alloy[J]. Journal of Materials Processing Technology, 2001, 118(1):231-237. [20] VELÁSQUEZ J D P, TIDU A, BOLLE B, et al. Sub-surface and surface analysis of high speed machined Ti-6Al-4V alloy[J]. Materials Science & Engineering A, 2010, 527(10-11):2572-2578. [21] WANG Q, LIU Z, YANG D, et al. Metallurgical-based prediction of stress-temperature induced rapid heating and cooling phase transformations for high speed machining Ti-6Al-4V alloy[J]. Materials & Design, 2017, 119(APR):208-218. [22] YANG D, LIU Z. Quantification of Microstructural Features and Prediction of Mechanical Properties of a Dual-Phase Ti-6Al-4V Alloy[J]. Materials, 2016, 9(8):628. [23] WU G Q, SHI C L, SHA W, et al. Effect of microstructure on the fatigue properties of Ti-6Al-4V titanium alloys[J]. Materials & Design, 2013, 46:668-674. [24] KUMPFERT J, KIM Y W, DIMIDUK D M. Effect of microstructure on fatigue and tensile properties of the gamma-Ti alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 1995, 192-193(Part 1):465-473. [25] JEONG D, KWON Y, GOTO M, et al. High cycle fatigue and fatigue crack propagation behaviors of β-annealed Ti-6Al-4V alloy[J]. International Journal of Mechanical and Materials Engineering, 2017, 12(1):1-10. [26] CRUPI V, EPASTO G, GUGLIELMINO E, et al. Influence of microstructure[alpha+beta and beta] on very high cycle fatigue behaviour of Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2017, 95:64-75. [27] JAGO G, BECHET J. Influence of microstructure of (α+β) Ti-6.2.4.6 alloy on high-cycle fatigue and tensile test behaviour[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 22(8):647-655. [28] OGUMA H, NAKAMURA T. The effect of microstructure on very high cycle fatigue properties in Ti-6Al-4V[J]. Scripta Materialia, 2010, 63(1):32-34. [29] 杨慎亮, 李勋, 王子铭, 等. TC4侧铣表面完整性对试件疲劳性能的影响[J]. 表面技术, 2019, 48(11):372-380. YANG Shenliang, LI Xun, WANG Ziming, et al. Influence of side milling on surface integrity and fatigue behavior of TC4 specimens[J]. Surface Technology, 2019, 48(11):372-380. [30] ROTELLA G, UMBRELLO D. Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy[J]. CIRP Annals Manufacturing Technology, 2014, 63(1):69-72. [31] PAN Z, LIANG S Y, GARMESTANI H, et al. Prediction of machining-induced phase transformation and grain growth of Ti-6Al-4V alloy[J]. International Journal of Advanced Manufacturing Technology, 2016, 87:859-866. [32] ARISOY Y M, ÖZEL T. Machine learning based predictive modeling of machining induced microhardness and grain size in Ti-6Al-4V alloy[J]. Advanced Manufacturing Processes, 2015, 30(4):425-433. [33] ARISOY Y M, ÖZEL T. Prediction of machining induced microstructure in Ti-6Al-4V alloy using 3-D FE-based simulations:Effects of tool micro-geometry, coating and cutting conditions[J]. Journal of Materials Processing Technology, 2015, 220:1-26. [34] CHE-HARON C H, JAWAID A. The effect of machining on surface integrity of titanium alloy Ti-6%Al-4%V[J]. Journal of Materials Processing Technology, 2005, 166(2):188-192. [35] HARDEN P M, PRETORIUS C J, SOO S L, et al. Tool wear behaviour and workpiece surface integrity when turning Ti-6Al-2Sn-4Zr-6Mo with polycrystalline diamond tooling[J]. CIRP Annals, 2015, 64(1):109-112. [36] LIANG X, LIU Z. Experimental investigations on effects of tool flank wear on surface integrity during orthogonal dry cutting of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2017, 93:1617-1626. [37] LIANG X, LIU Z, WANG B, et al. Modeling of plastic deformation induced by thermo-mechanical stresses considering tool flank wear in high-speed machining Ti-6Al-4V[J]. International Journal of Mechanical Sciences, 2018, 140:1-12. [38] HUGHES J I, SHARMAN A R C, RIDGWAY K. The Effect of cutting tool material and edge geometry on tool life and workpiece surface integrity[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2006, 220(2):93-107. [39] 谭靓, 刘维伟, 姚倡锋, 等. 球头铣刀刀具姿态对钛合金加工表面完整性的影响[J]. 工具技术, 2015, 49(12):39-43. TAN Liang, LIU Weiwei, YAO Changfeng, et al. Effect of tool posture on surface integrity in ball end milling of titanium alloy[J]. Tool Engineering, 2015, 49(12):39-43. [40] GINTING A, NOUARI M. Surface integrity of dry machined titanium alloys[J]. International Journal of Machine Tools & Manufacture, 2009, 49(3-4):325-332. [41] SHI Q, HE N, LI L, et al. Analysis on surface integrity during high speed milling for new damage-tolerant titanium alloy[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(3):222-226. [42] YANG H C, CHEN Z T, ZHOU Z T. Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(5):1113-1126. [43] LI M Q, CHEN D J, XIONG A M, et a1. An adaptive prediction model of grain size for the forging of Ti-6Ai-4V alloy based on fuzzy neural networks[J]. Journal of Materials Processing Technology, 2002, 123(3):377-381. [44] 熊爱明, 薛善坤, 李淼泉. TC4钛合金高温变形时微观组织变化的计算[J]. 塑性工程学报, 2002, 9(1):14-16. XIONG Aiming, XUE Shankun, LI Miaoquan. Microstructure evolution and modeling during isothermal deformation of TC4 titanium alloy[J]. Journal of Plasticity Engineering, 2002, 9(1):14-16. [45] 李萍, 薛克敏, 吕炎, 等. Ti-15-3合金热反挤成形微观组织的模拟[J]. 机械工程学报, 2003, 39(1):133-136. LI Ping, XUE Kemin, Lü Yan, et al. Simulation of microstructure of Ti-15-3 alloy during hot back-extrusion[J]. Journal of Mechanical Engineering, 2003, 39(1):133-136. [46] SUN Z C, YANG H, HAN G J, et al. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy[J]. Materials Science & Engineering:A, 2010, 527(15):3464-3471. [47] DING H, SHIN Y C. Dislocation density-based grain refinement modeling of orthogonal cutting of titanium[J]. Journal of Manufacturing Science & Engineering, 2014, 136(4):152-161. [48] 钟鑫, 赵军, 王银涛, 等. 钛合金加工过程中晶粒尺寸的模拟与分析[J]. 工具技术, 2018, 52(03):10-14. ZHONG Xin, ZHAO Jun, WANG Yintao, et al. Simulation and analysis of grain size in machining titanium alloy[J]. Tool Engineering, 2018, 52(03):10-14. [49] QUAN G, PAN J, ZHANG Z. Phase transformation and recrystallization kinetics in space-time domain during isothermal compressions for Ti-6Al-4V analyzed by multi-field and multi-scale coupling FEM[J]. Materials & Design, 2016, 94:523-535. [50] PAN Z, LIANG S Y, GARMESTANI H, et al. Prediction of machining-induced phase transformation and grain growth of Ti-6Al-4V alloy[J]. International Journal of Advanced Manufacturing Technology, 2016, 87:859-866. [51] 张军, 陈文雄, 郑成武, 等. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟[J]. 金属学报, 2017(6):122-130. ZHANG Jun, CHEN Wenxiong, ZHENG Chengwu, et al. Phase-field modeling of austenite-to-ferrite transformation in Fe-C-Mn ternary alloys[J]. Acta Metallurgica Sinica, 2017(6):122-130. [52] BHATTACHARYA A, UPADHYAY C S, SANGAL S. Phase-field model for mixed-mode of growth applied to austenite to ferrite transformation[J]. Metallurgical & Materials Transactions A, 2015, 46(2):926-936. [53] HEO T W, CHEN L. Phase-field modeling of nucleation in solid-state phase transformations[J]. JOM, 2014, 66(8):1520-1528. [54] 吴全兴. 相场法模拟钛合金相变[J]. 钛工业进展, 2013(5):42-42. WU Quanxing. Simulate the phase transition of titanium alloy using phase field method[J]. Titanium Industry Progress, 2013(5):42. [55] LU L, SRIDHAR N, ZHANG Y. Phase field simulation of powder bed-based additive manufacturing[J]. Acta Materialia, 2018, 144:801-809. [56] ANDERSON M P, SROLOVITZ D J, GREST G S, et al. Computer simulation of grain growth-I. Kinetics[J]. Acta Metallurgica, 1984, 32(5):783-791. [57] ANDERSON M P, GREST G S, SROLOVITZ D J. Grain growth in three dimensions:A lattice model[J]. Scripta Metallurgica, 1985, 19(2):230. [58] ROLLETT A D, SROLOVITZ D J, DOHERTY R D, et al. Computer simulation of recrystallization in non-uniformly deformed metals[J]. Acta Metallurgica, 1989, 37(2):627-639. [59] ROLLETT A D, SROLOVITZ D J, ANDERSON M P, et al. Computer simulation of recrystallization-III. Influence of a dispersion of fine particles[J]. Acta Metallurgica et Materialia, 1992, 40(12):3475-3495. [60] HORE S, DAS S K, BANERJEE S, et al. Monte Carlo simulation of microstructure evolution during thermo-mechanical rolling of steel using grid computing technology:2013 National Conference on Parallel Computing Technologies (PARCOMPTECH) 2013 National Conference on Parallel Computing Technologies (PARCOMPTECH)[Z]. 20131-7. [61] TONG M, LI D, LI Y, et al. Modeling the austenite-ferrite isothermal transformation in an Fe-C binary system and experimental verification[J]. Metallurgical and Materials Transactions A, 2002, 33(10):3111-3115. [62] TONG M, LI D, LI Y, et al. Monte Carlo-method simulation of the deformation-induced ferrite transformation in the Fe-C system[J]. Metallurgical and Materials Transactions A, 2004, 35(5):1565-1577. [63] 李旭. TA9钛合金热变形过程微观组织演变的研究[D]. 南京:南京航空航天大学, 2012. LI Xu. Microstructure evolution research on TA9 titanium alloy in hot deformation[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012. [64] GOETZ R L, SEETHARAMAN V. Modeling dynamic recrystallization using cellular automata[J]. Scripta Materialia, 1998, 38(3):405-413. [65] DING R, GUO Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia, 2001, 49(16):3163-3175. [66] DING R, GUO Z X. Microstructural evolution of a Ti-6Al-4V alloy during β-phase processing:experimental and simulative investigations[J]. Materials Science and Engineering:A, 2004, 365(1):172-179. [67] DING R, GUO Z X. Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach[J]. Computational Materials Science, 2002, 23(1-4):218. [68] 甘国强. TA15合金形变-相变耦合过程的介观模拟计算[D]. 合肥:合肥工业大学, 2013. GAN Guoqiang. Mesoscopic simulation of the coupling between deformation and phase transformation in TA15 alloy[D]. Hefei:Hefei University of Technology, 2013. [69] SONG K J, WEI Y H, FANG K, et al. Cellular automaton-based study of factors that affect dynamic solid phase transformation kinetics[J]. Applied Mathematical Modelling, 2015, 39(17):5058-5072. [70] SONG K J, WEI Y H, DONG Z B, et al. Virtual front tracking cellular automaton modeling of isothermal β to α phase transformation with crystallography preferred orientation of TA15 alloy[J]. Modelling & Simulation in Materials Science & Engineering, 2014, 22(1):5006. [71] LIU Y X, LIN Y C, ZHOU Y. 2D cellular automaton simulation of hot deformation behavior in a Ni-based superalloy under varying thermal-mechanical conditions[J]. Materials Science & Engineering:A, 2017, 619:88-99. [72] CHEN D, LIN Y C, WU F. A design framework for optimizing forming processing parameters based on matrix cellular automaton and neural network-based model predictive control methods[J]. Applied Mathematical Modelling, 2019, 76:918-937. [73] LIU Y X, LIN Y C, LI H B, et al. Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model[J]. Materials Science & Engineering:A, 2015, 626:432-440. |
[1] | WEI Rong, XU Moran, LI Changping, LI Shujian, LI Pengnan. Modeling of Multi-energy Field and Regulation Optimization for Electric Discharge Assisted Milling (EDAM) of Titanium Alloys [J]. Journal of Mechanical Engineering, 2024, 60(9): 393-409. |
[2] | WANG Minjie, WANG Yang, WEI Zhaocheng, DUAN Chunzheng. Slip Line Field of Adiabatic Shear Band in Cutting Process [J]. Journal of Mechanical Engineering, 2022, 58(7): 284-294. |
[3] | ZHANG Zhenyu, WU Jun, SONG Kefeng, GUO Zhaozhi, CHENG Jun. Study on Grinding Force and Machined Surface Quality in Ultra-fine Micro Grinding of Titanium Alloy [J]. Journal of Mechanical Engineering, 2022, 58(15): 75-91. |
[4] | ZHANG Xiangyu, LU Zhenghui, PENG Zhenlong, ZHANG Deyuan. High Quality and Efficient Ultrasonic Vibration Cutting of Titanium Alloys [J]. Journal of Mechanical Engineering, 2021, 57(5): 133-147. |
[5] | ZHAO Dewang, REN Daxin, ZHAO Kunmin, GUO Xinglin, YANG Wenping. Effect of Welding Parameters on Tensile and Fatigue Properties of Ultrasonic Spot Welded Dissimilar Joints of Magnesium to Titanium Sheets [J]. Journal of Mechanical Engineering, 2017, 53(24): 118-125. |
[6] | SHAO Zhenyu, LI Zhe, ZHANG Deyuan, JIANG Xinggang, QIN Wei. Study on the Thrust Force and Chip in Rotary Ultrasonic-assisted Drilling of Titanium Alloys (Ti6Al4V) [J]. Journal of Mechanical Engineering, 2017, 53(19): 66-72. |
[7] | CHEN Tao, LIU Xianli, LI Suyan, LI Kai, LIU Tao. Mechanism of White Layer Formation on Machined Surface of High-speed Hard Machining [J]. Journal of Mechanical Engineering, 2015, 51(23): 182-188. |
[8] | ZHU Hua;LI Gang;TANG Wei. ROOT MEAN SQUARE METHOD ON VALID FRACTAL CHARACTERIZATION FOR MACHINED SURFACES [J]. , 2006, 42(9): 140-143. |
[9] | CUI Li;LI Zhuoxin;WEI Qi. IMPROVEMENT ON RESISTANCE TO HIGH TEMPERATURE OXIDATION OF TITANIUM ALLOYS DURING TENSILE TEST [J]. , 2006, 42(7): 46-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||