Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (5): 1-18.doi: 10.3901/JME.2024.05.001
Previous Articles Next Articles
ZHANG Liyuan1, YANG Jinbo1, LI Ao1, YANG Qingkai2, XU Guangkui3
Received:
2023-05-17
Revised:
2023-11-20
Online:
2024-03-05
Published:
2024-05-30
CLC Number:
ZHANG Liyuan, YANG Jinbo, LI Ao, YANG Qingkai, XU Guangkui. Review on Configuration Design and Control of Tensegrity Spherical Robots[J]. Journal of Mechanical Engineering, 2024, 60(5): 1-18.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] 习近平. 不断做强做优做大我国数字经济[J]. 求是, 2022(2):4-8. XI Jinping. Building up the strength,quality,and size of China’s digital economy[J]. Qiushi,2022(2):4-8. [2] 工业和信息化部. 《“十四五”机器人产业发展规划》解读[J]. 自动化博览,2022,39(3):14-15. Ministry of Industry and Information Technology. Interpretation of the “14th Five Year Plan” robot industry development plan[J]. Automation Panorama,2022,39(3):14-15. [3] 郭倩. 工信部将加快实施“机器人+”应用行动[N]. 2022-08-09(004). GUO Qian. The ministry of industry and information technology will accelerate the implementation of the “robot+” application action[N]. Economic Information Daily,2022-08-09(004). [4] DWARACHERLA V,THAKAR S,VACHHANI L,et al. Motion planning for point-to-point navigation of spherical robot using position feedback[J]. IEEE-ASME Transactions on Mechatronics,2019,24(5):2416-2426. [5] FULLER R B. Tensile integrity structures:America,ES19600260556[P]. 1960-11-16. [6] EMMERICH D G. Emmerich on self-tensioning structures[J]. International Journal of Space Structures,1996,11(1-2):29-36. [7] SADAO S. Fuller on tensegrity[J]. International Journal of Space Structures,1996,11(1-2):37-42. [8] SNELSON K. Snelson on the tensegrity invention[J]. International Journal of Space Structures,1996,11(1-2):43-48. [9] PUGH A. An introduction to tensegrity[M]. Oakland:Univ. of California Press,1976. [10] GEIGER D H,STEFANIUK A,CHEN D. The design and construction of two cable domes for the Korean Olympics[C]// Proceedings of the IASS Symposium on Shells,Membranes and Space Frames. Amsterdam:Elsevier Science Publishers BV,1986:265-272. [11] SKELTON R E,ADHIKARI R,PINAUD J P,et al. An introduction to the mechanics of tensegrity structures[C]// Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228). ORLANDO:IEEE,2001:4254-4259. [12] MOTRO R. Tensegrity:structural systems for the future[M]. Amsterdam:Elsevier,2003. [13] LI Y,FENG X Q,CAO Y P,et al. Constructing tensegrity structures from one-bar elementary cells[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2010,466(2113):45-61. [14] INGBER D E. Tensegrity:the architectural basis of cellular mechanotransduction[J]. Annual Review of Physiology,1997,59:575-599. [15] WANG N,BUTLER J P,INGBER D E. Mechanotransduction across the cell surface and through the cytoskeleton[J]. Science (New York,NY),1993,260(5111):1124-1127. [16] HANG J T,XU G K. Stiffening and softening in the power-law rheological behaviors of cells[J]. Journal of the Mechanics and Physics of Solids,2022,167:104989. [17] QIN Y,LI Y,ZHANG L Y,et al. Stochastic fluctuation-induced cell polarization on elastic substrates:a cytoskeleton-based mechanical model[J]. Journal of the Mechanics and Physics of Solids,2020,137:103872. [18] YIN X,WANG B C,LIU L,et al. A structural stiffness matrix-based computational mechanics method of epithelial monolayers[J]. Journal of the Mechanics and Physics of Solids,2022,169:105077. [19] LIU Y,CHENG J,YANG H,et al. Rotational constraint contributes to collective cell durotaxis[J]. Applied Physics Letters,2020,117(21):213702. [20] LIU Y,XU G K,ZHANG L Y,et al. Stress-driven cell extrusion can maintain homeostatic cell density in response to overcrowding[J]. Soft Matter,2019,15(42):8441-8449. [21] XU G K,FENG X Q,GAO H. Orientations of cells on compliant substrates under biaxial stretches:a theoretical Study[J]. Biophysical Journal,2018,114(3):701-710. [22] 耿金嵩. 张拉式可展太空舱段骨架结构设计与分析[D]. 哈尔滨:哈尔滨工程大学,2018. GENG Jinsong. Design and analysis of tension-type spacecabin skeleton structure[D]. Harbin:Harbin Engineering University,2018. [23] 吴文友. 可展开张拉整体结构天线形态综合及热分析[D]. 西安:西安电子科技大学,2012. WU Wenyou. Configuration synthesis and thermal analysis of deployable tensegrity antenna[D]. Xi’an:Xi’an University of Electronic Science and Technology,2012. [24] 周一一,陈联盟. 浅谈张拉整体结构发展的历史与趋势[J]. 空间结构,2013,19(4):11-17. ZHOU Yiyi,CHEN Lianmeng. Development of tensegrity structure:history and tendency[J]. Spatial Structures,2013,19(4):11-17. [25] LIU S,LI Q,WANG P,et al. Kinematic and static analysis of a novel tensegrity robot[J]. Mechanism and Machine Theory,2020,149:103788. [26] MOORED K W,KEMP T H,HOULE N E,et al. Analytical predictions,optimization,and design of a tensegrity-based artificial pectoral fin[J]. International Journal of Solids and Structures,2011,48(22-23):3142-3159. [27] ALI N B H,RHODE-BARBARIGOS L,SMITH I F C. Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm[J]. International Journal of Solids and Structures,2011,48(5):637-647. [28] MELNYK A,PITTI A. Synergistic control of a multi-segments vertebral column robot based on tensegrity for postural balance[J]. Advanced Robotics,2018,32(15):850-864. [29] ABOURACHID A,BöHMER C,WENGER P,et al. Modelling,design and control of a bird neck using tensegrity mechanisms[C]// ICRA'2019 Worskhop on Tensegrity. Montreal:ICRA,2019:1-4. [30] CHEN B,JIANG H. Swimming performance of a tensegrity robotic fish[J]. Soft Robotics,2019,6(4):520-531. [31] CHEN L H,CERA B,ZHU E L,et al. Inclined surface locomotion strategies for spherical tensegrity robots[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Vancouver:IEEE,2017:4976-4981. [32] SABELHAUS A P,BRUCE J,CALUWAERTS K,et al. System sesign and locomotion of SUPERball,an untethered tensegrity robot[C]// 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle:IEEE,2015:2867-2873. [33] SNELSON K D. Continuous tension,discontinuous compression structures[Z]. Google Patents. 1965 [34] 陈晓光,罗尧治. 张拉整体单元找形问题研究[J]. 空间结构,2003,9(1):35-39. CHEN Xiaoguang,LUO Yaozhi. Study on form finding problems of tensegrity elements[J]. Spatial Structures,2003,9(1):35-39. [35] EHARA S,KANNO Y. Topology design of tensegrity structures via mixed integer programming[J]. International Journal of Solids and Structures,2010,47(5):571-579. [36] KANNO Y. Topology optimization of tensegrity structures under compliance constraint:a mixed integer linear programming approach[J]. Optimization and Engineering,2013,14(1):61-96. [37] KANNO Y. Topology optimization of tensegrity structures under self-weight loads[J]. Journal of the Operations Research Society of Japan,2012,55(2):125-145. [38] KANNO Y. Exploring new tensegrity structures via mixed integer programming[J]. Structural and Multidisciplinary Optimization,2013,48(1):95-114. [39] XU X,WANG Y,LUO Y. General approach for topology-finding of tensegrity structures[J]. Journal of Structural Engineering,2016,142(10):04016061. [40] 王雅峰,许贤,罗尧治. 张拉整体结构拓扑找形研究[C]// 第十六届空间结构学术会议论文集. 杭州,2016:425-432. WANG Yafeng,XU Xian,LUO Yaozhi. Study on topological form finding of tensegrity structure[C]// Proceedings of the 16th Academic Conference on Spatial Structures. Hangzhou,2016:425-432. [41] XU X,WANG Y,LUO Y. An improved multi-objective topology optimization approach for tensegrity structures[J]. Advances in Structural Engineering,2018,21(1):59-70. [42] SU Y,ZHANG J,OHSAKI M,et al. Topology optimization and shape design method for large-span tensegrity structures with reciprocal struts[J]. International Journal of Solids and Structures,2020,206:9-22. [43] ZHANG L Y,LI Y,XU G K,et al. Enumeration screening method for the design of simple polygonal tensegrities[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2019,475(2228):20180812. [44] YIN X,LI Y,ZHANG L Y,et al. Constructing various simple polygonal tensegrities by directly or recursively adding bars[J]. Composite Structures,2020,234:111693. [45] MALIK P K,GUHA A,SESHU P. Topology identification for super-stable tensegrity structure from a given number of nodes in two dimensional space[J]. Mechanics Research Communications,2022,119:103810. [46] ALOUI O,FLORES J,ORDEN D,et al. Cellular morphogenesis of three-dimensional tensegrity structures[J]. Computer Methods in Applied Mechanics and Engineering,2019,346:85-108. [47] ALOUI O,ORDEN D,RHODE-BARBARIGOS L. Generation of planar tensegrity structures through cellular multiplication[J]. Applied Mathematical Modelling,2018,64:71-92. [48] ZHANG L Y,ZHAO H P,FENG X Q. Constructing large-scale tensegrity structures with bar-bar connection using prismatic elementary cells[J]. Archive of Applied Mechanics,2015,85(3):383-394. [49] ZHANG L Y,LI S X,ZHU S X,et al. Automatically assembled large-scale tensegrities by truncated regular polyhedral and prismatic elementary cells[J]. Composite Structures,2018,184:30-40. [50] 朱世新,张立元,李松雪,等. 数字状张拉整体结构的构型设计与力学性能模拟[J]. 力学学报,2018,50(4):798-809. ZHU Shixin,ZHANG Liyuan,LI Songxue,et al. Number-shaped tensegrity structures:configuration design and mechanical properties analysis[J] Theoretical and Applied Mechanics,2018,50(4):798-809. [51] ZHANG L Y,ZHU S X,LI S X,et al. Analytical form-finding of tensegrities using determinant of force-density matrix[J]. Composite Structures,2018,189:87-98. [52] MA S,CHEN M,PENG Z,et al. The equilibrium and form-finding of general tensegrity systems with rigid bodies[J]. Engineering Structures,2022,266:114618. [53] ZHANG L Y,ZHU S X,CHEN X F,et al. Analytical form-finding for highly symmetric and super-stable configurations of rhombic truncated regular polyhedral tensegrities[J]. Journal of Applied Mechanics- Transactions of the ASME,2019,86(3):031006. [54] 蔡建国,冯健. 张拉整体结构的多平衡态研究[J]. 土木工程学报,2014,47(10):32-39. CAI Jianguo,FENG Jian. Study on multi equilibrium of tensegrity structure[J]. China Civil Engineering Journal,2014(10):32-39. [55] DOMER B,FEST E,LALIT V,et al. Combining dynamic relaxation method with artificial neural networks to enhance simulation of tensegrity structures[J]. Journal of Structural Engineering-Asce,2003,129(5):672-681. [56] PANIGRAHI R,GUPTA A,BHALLA S,et al. Application of artificial neural network for form finding of tensegrity structures[C]// Proceedings of the 2nd Indian International Conference on Artificial Intelligence. Pune:IICAI. 2005:1950-1962. [57] ZALYAEV E,SAVIN S,VOROCHAEVA L. Machine learning approach for tensegrity form finding:Feature extraction problem[C]// 20204th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR). Innopolis:IEEE,2020:265-268. [58] LEE S,LIEU Q X,VO T P,et al. Deep neural networks for form-finding of tensegrity structures[J]. Mathematics,2022,10(11):1822. [59] SUN Z,ZHAO L,LIU K,et al. An advanced form-finding of tensegrity structures aided with noise-tolerant zeroing neural network[J]. Neural Computing & Applications,2022,34(8):6053-6066. [60] XU X,LUO Y. Multistable tensegrity structures[J]. Journal of Structural Engineering-Asce,2011,137(1):117-123. [61] MICHELETTI A. Bistable regimes in an elastic tensegrity system[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2013,469(2154):20130052. [62] BONI C,REIS P M,ROYER-CARFAGNI G. Flexural-tensegrity snapping tails for bio-inspired propulsion in fluids[J]. Extreme Mechanics Letters,2022,56:101853. [63] SUN J,ZHANG S,WANG Z,et al. Design of a new foot structure based on the mast-type octahedral tensegrity structure[J]. Mechanism and Machine Theory,2022,177:105016. [64] MOTRO R,NAJARI S,JOUANNA P. Static and dynamic analysis of tensegrity systems[C]// Shell and Spatial Structures:Computational Aspects:Proceedings of the International Symposium July 1986,Leuven,Belgium. Leuven:Springer Berlin Heidelberg,1987:270-279. [65] 许贤,蔡晖映,孙凤先,等. 基于线性规划的张拉整体结构位移优化控制[J]. 浙江大学学报,2017,51(11):2093-2100. XU Xian,CAI Huiying,SUN Fengxian,et al. Optimal displacement control of tensegrity structures based on linear programming[J]. Journal of Zhejiang University,2017,51(11):2093-2100. [66] MA S,CHEN M,SKELTON R E. Tensegrity system dynamics based on finite element method[J]. Composite Structures,2022,280:114838. [67] MA S,CHEN M,SKELTON R E. Dynamics and control of clustered tensegrity systems[J]. Engineering Structures,2022,264:114391. [68] LI F,PENG H,YANG H,et al. A symplectic kinodynamic planning method for cable-driven tensegrity manipulators in a dynamic environment[J]. Nonlinear Dynamics,2021,106(4):2919-2941. [69] YANG S. Deployment of a foldable tensegrity-membrane system via configuration transitions using linear parameter-varying control[J]. Structural Control & Health Monitoring,2021,28(7):e2739. [70] GUO Y,PENG H. Full-actuation rolling locomotion with tensegrity robot via deep reinforcement learning[C]// 20215th International Conference on Robotics and Automation Sciences (ICRAS). Wuhan:IEEE,2021:51-55. [71] WANG K,AANJANEYA M,BEKRIS K,et al. Sim2sim evaluation of a novel data-efficient differentiable physics engine for tensegrity robots[C]// 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague:IEEE,2021:1694-1701. [72] YIN X,ZHANG S,XU G K,et al. Bandgap characteristics of a tensegrity metamaterial chain with defects[J]. Extreme Mechanics Letters,2020,36:100668. [73] ZHANG L Y,YIN X,YANG J,et al. Multilevel structural defects-induced elastic wave tunability and localization of a tensegrity metamaterial[J]. Composites Science and Technology,2021,207:108740. [74] 杜汶娟,马书根,李斌,等. 可变结构体机器人形变状态找寻及运动方向预测方法[J]. 科学通报,2013,58(Suppl. 2):97-103. DU Wenjuan,MA Shugen,LI Bin,et al. Method to seek the deformed shape and to find the rolling direction of tensegrity robots[J]. Chinese Science Bulletin,2013,58(Suppl. 2):97-103. [75] 杜汶娟,马书根,李斌,等. 可变结构体机器人滚动步态参数优化[J]. 机械工程学报,2016,52(17):127-136. DU Wenjuan,MA Shugen,LI Bin,et al. Parameter optimization for rolling motion of structure variable robots[J]. Journal of Mechanical Engineering,2016,52(17):127-136. [76] 赵凯凯,常健,李斌,等. 张拉整体机器人建模及静态坡面研究[J]. 高技术通讯,2020,30(5):501-507. ZHAO Kaikai,CHANG Jian,LI Bin,et al. Research on modeling and static slope of tensioning integral robot[J]. Chinese High Technology Letters,2020,30(5):501-507. [77] KIM K,CHEN L H,CERA B,et al. Hopping and rolling locomotion with spherical tensegrity robots[C]// 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon:IEEE,2016:4369-4376. [78] 袁李. 基于四杆张拉整体结构的机器人研究[D]. 哈尔滨:哈尔滨工程大学,2016. YUAN Li. The robot research based on four bars tensegrity structure[D]. Harbin:Harbin Engineering University,2016. [79] MINTCHEV S,ZAPPETTI D,WILLEMIN J,et al. A soft robot for random exploration of terrestrial environments[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane:IEEE,2018:7492-7497. [80] KOIZUMI Y,SHIBATA M,HIRAI S,et al. Rolling tensegrity driven by pneumatic soft actuators[C]// 2012 IEEE International Conference on Robotics and Automation. Saint Paul:IEEE,2012:1988-1993. [81] HANAOR A. Double-layer tensegrity grids as deployable structures[J]. International Journal of Space Structures,1993,8(1-2):135-143. [82] ZHAO K,CHANG J,LI B,et al. Rolling direction prediction of tensegrity robot on the slope based on FEM and GA[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2020,234(19):3846-3858. [83] KIM K. On the locomotion of spherical tensegrity robots[M]. California:University of California,Berkeley,2016. [84] BRUCE J,CALUWAERTS K,ISCEN A,et al. Design and evolution of a modular tensegrity robot platform[C]// 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong:IEEE,2014,3483-3489. [85] FRIESEN J M,GLICK P,FANTON M,et al. The second generation prototype of a duct climbing tensegrity robot,DuCTTv2[C]// 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm:IEEE,2016:2123-2128. [86] KHAZANOV M,HUMPHREYS B,KEAT W,et al. Exploiting dynamical complexity in a physical tensegrity robot to achieve locomotion[C]// ECAL 2013:The Twelfth European Conference on Artificial Life. Taormina:MIT Press,2013:965-972. [87] KHAZANOV M,JOCQUE J,RIEFFEL J. Evolution of locomotion on a physical tensegrity robot[C]// ALIFE 14:The Fourteenth International Conference on the Synthesis and Simulation of Living Systems. Manhattan:MIT Press,2014:232-238. [88] ZHA J,WU X,KROEGER J,et al. A collision-resilient aerial vehicle with icosahedron tensegrity structure[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas:IEEE,2020:1407-1412. [89] RIEFFEL J,MOURET J B. Adaptive and resilient soft tensegrity robots[J]. Soft Robotics,2018,5(3):318-329. [90] VESPIGNANI M,ERCOLANI C,FRIESEN J M,et al. Steerable locomotion controller for six-strut icosahedral tensegrity robots[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid:IEEE,2018:2886-2892. [91] 田云峰,罗阿妮,刘贺平. 4杆张拉整体机器人单步驱动方式分析[J]. 制造业自动化,2019,41(7):93-97. TIAN Yunfeng,LUO Ani,LIU Heping. Analysis for driving the 4-bar tensegrity robot to roll[J]. Manufacturing Automation,2019,41(7):93-97. [92] ZHAO Y,ZHOU S,LIN C,et al. An efficient locomotion strategy for six-strut tensegrity robots[C]// 201713th IEEE International Conference on Control & Automation (ICCA). Ohrid:IEEE,2017:413-418. [93] RIEFFEL J,STUK R,VALERO-CUEVAS F J,et al. Locomotion of a tensegrity robot via dynamically coupled modules[C]// Proceedings of the International Conference on Morphological Computation. Venice,2007:1-3. [94] MIRLETZ B T,BHANDAL P,ADAMS R D,et al. Goal-directed CPG-based control for tensegrity spines with many degrees of freedom traversing irregular terrain[J]. Soft Robotics,2015,2(4):165-176. [95] ISCEN A,AGOGINO A,SUNSPIRAL V,et al. Flop and roll:learning robust goal-directed locomotion for a tensegrity robot[C]// 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago:IEEE,2014:2236-2243. [96] ISCEN A,AGOGINO A,SUNSPIRAL V,et al. Controlling tensegrity robots through evolution[C]// Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. New York,2013:1293-1300. [97] CALUWAERTS K,DESPRAZ J,ISCEN A,et al. Design and control of compliant tensegrity robots through simulation and hardware validation[J]. Journal of the Royal Society Interface,2014,11(98):20140520. [98] SUNSPIRAL V,AGOGINO A,ATKINSON D. Super ball bot-structures for planetary landing and exploration,niac phase 2 final report[R]. 2015. [99] AGOGINO A K,SUNSPIRAL V,ATKINSON D. Super ball bot-structures for planetary landing and exploration[R]. 2018. [100] CERA B,AGOGINO A M. Multi-cable rolling locomotion with spherical tensegrities using model predictive control and deep learning[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid:IEEE,2018:1-9. [101] ZHANG M,GENG X,BRUCE J,et al. Deep reinforcement learning for tensegrity robot locomotion[C]// 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore:IEEE,2017:634-641. [102] LUO J,EDMUNDS R,RICE F,et al. Tensegrity robot locomotion under limited sensory inputs via deep reinforcement learning[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane:IEEE,2018:6260-6267. [103] 郭亚奇. 基于强化学习的张拉整体机器人运动控制研究[D]. 大连:大连理工大学,2021. GUO Yaqi. Tensegrity robot locomotion control via reinforcement learning[D]. Dalian:Dalian University of Technology,2021. [104] PAUL C,VALERO,CUEVAS F J,et al. Design and control of tensegrity robots for locomotion[J]. IEEE Transactions on Robotics,2006,22(5):944-957. [105] WANG K,AANJANEYA M,BEKRIS K. A first principles approach for data-efficient system identification of spring-rod systems via differentiable physics engines[C]// Learning for Dynamics and Control. Palo Alto:PMLR,2020:651-665. [106] TODOROV E,EREZ T,MUJOCO Y. A physics engine for model-based control[C]// 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve:IEEE,2012:5026-5033. [107] MIRLETZ B T,PARK I W,QUINN R D,et al. Towards bridging the reality gap between tensegrity simulation and robotic hardware[C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg:IEEE,2015:5357-5363. [108] TADIPARTHI V,HSU S C,BHATTACHARYA R. STEDY:Software for tensegrity dynamics[J]. Journal of Open Source Software,2019,4(33):1042. [109] GOYAL R,CHEN M,MAJJI M,et al. Motes:Modeling of tensegrity structures[J]. Journal of Open Source Software,2019,4(42):1613. [110] SHAH D S,BOOTH J W,BAINES R L,et al. Tensegrity robotics[J]. Soft Robotics,2022,9(4):639-56. [111] BATTAGLIA P,PASCANU R,LAI M,et al. Interaction networks for learning about objects,relations and physics[J]. Advances in Neural Information Processing Systems,2016,29:1. [112] KIM K,AGOGINO A K,MOON D,et al. Rapid prototyping design and control of tensegrity soft robot for locomotion[C]// IEEE International Conference on Robotics & Biomimetics. Bali:IEEE,2015:7-14. [113] KIM K,AGOGINO A K,AGOGINO A M. Emergent form-finding for center of mass control of ball-shaped tensegrity robots[C]// Autonomous Robots and Multirobot Systems (ARMS) Workshop,2015 International Conference on Autonomous Agents and Multiagent Systems. Istanbul:ACM,F,2015:1. [114] KIM K,AGOGINO A K,TOGHYAN A,et al. Robust learning of tensegrity robot control for locomotion through form-finding[C]// Autonomous Robots and Multirobot Systems (ARMS) Workshop,2015 International Conference on Autonomous Agents and Multiagent Systems. Istanbul:ACM. 2015:1. [115] CHEN L.H,KIM K,TANG E,et al. Soft spherical tensegrity robot design using rod-centered actuation and control[J]. Journal of Mechanisms and Robotics-Transactions of the Asme,2017,9(2):1. [116] SUNSPIRAL V,GOROSPE G,BRUCE J,et al. Tensegrity based probes for planetary exploration:entry,descent and landing (EDL) and surface mobility analysis[J]. International Journal of Planetary Probes,2013,7:13. [117] SABELHAUS A P,BRUCE J,CALUWAERTS K,et al. Hardware design and testing of SUPERball,a modular tensegrity robot[C]// 2015 IEEE international conference on robotics and automation (ICRA). Barcalona:IEEE,2015:2867-2873. [118] BRUCE J,SABELHAUS A P,CHEN Y,et al. SUPERball:exploring tensegrities for planetary probes[C]// International Symposium on Artificial Intelligence,Robotics and Automation in Space (i-SAIRAS). Montreal:2014:ARC-E-DAA-TN15338. [119] BURMS J,CALUWAERTS K,DAMBRE J,et al. Online unsupervised terrain classification for a compliant tensegrity robot using a mixture of echo state networks[C]// 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle:IEEE,2015:4252-4257. [120] VESPIGNANI M,FRIESEN J M,SUNSPIRAL V,et al. Design of SUPERball v2,a compliant tensegrity robot for absorbing large impacts[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid:IEEE,2018:2865-2871. [121] SHIBATA M,SAIJYO F,HIRAI S,et al. Crawling by body deformation of tensegrity structure robots[C]// 2009 IEEE International Conference on Robotics and Automation. Kobe:IEEE,2009:4375-4380. [122] HIRAI S,KOIZUMI Y,SHIBATA M,et al. Active shaping of a tensegrity robot via pre-pressure[C]// 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong:IEEE,2013:19-25. [123] WU L,DE ANDRADE M J,BRAHME T,et al. A reconfigurable robot with tensegrity structure using nylon artificial muscles[C]// Active and Passive Smart Structures and Integrated Systems 2016. Las Vegas:SPIE,2016,9799:950-960. [124] BOEHM V,KAUFHOLD T,SCHALE F,et al. Spherical mobile robot based on a tensegrity structure with curved compressed members[C]// 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE,2016:1509-1514. [125] BOEHM V,KAUFHOLD T,ZEIDIS I,et al. Dynamic analysis of a spherical mobile robot based on a tensegrity structure with two curved compressed members[J]. Archive of Applied Mechanics,2017,87(5):853-864. [126] GARANGER K,KRAJEWSKI M,DEL VALLE I,et al. Soft tensegrity systems for planetary landing and exploration[J]. arXiv e-prints,2020:arXiv:2003.10999. [127] SAVIN S,AL BADR A,DEVITT D,et al. Mixed-integer-based path and morphing planning for a tensegrity drone[J]. Applied Sciences-Basel,2022,12(11):5588. [128] SAVIN S,KLIMCHIK A. Morphing-enabled path planning for flying tensegrity robots as a semidefinite program[J]. Frontiers in robotics and AI,2022,9:812849-812849. [129] LIU Qi,LI Pu,YIN Yuhan,et al. Rolling strategy and motion controller design for an aerial vehicle surrounded by a six-bar tensegrity structure[C]// 202342nd Chinese Control Conference (CCC). Tianjin:IEEE,2023:4131-4136. [130] BAINES R L,BOOTH J W,KRAMER-BOTTIGLIO R. Rolling soft membrane-driven tensegrity robots[J]. IEEE Robotics and Automation Letters,2020,5(4):6567-6574. [131] BOOTH J W,SHAH D,CASE J C,et al. Omniskins:robotic skins that turn inanimate objects into multifunctional robots[J]. Science Robotics,2018,3(22):eaat1853. |
[1] | XIE Chao, ZHANG Enjie, YAN Biao, GAO Feng, YANG Jinping, FANG Guangqiang, WANG Zhiyi. Configuration Design and Demonstration of a Spaceborne Deployable Membrane Array Antenna [J]. Journal of Mechanical Engineering, 2024, 60(3): 11-27. |
[2] | CHEN Zheng, Lü Litong, WANG Fei, YAO Bin, LI Dongming, LIU Hongguang, ZHANG Guoliang. Motion Control of Independent Metering Electro-hydraulic System Based on Chamber Pressure Planning without Mode Switch [J]. Journal of Mechanical Engineering, 2024, 60(2): 302-312. |
[3] | YUAN Xiaoqing, WU Tao, YUAN Xun, WANG Wendong. Research on a Full-body Power-assisted Exoskeleton Control Method Based on GSO-RF Intent Recognition Algorithm [J]. Journal of Mechanical Engineering, 2024, 60(17): 91-101. |
[4] | GAO Haibo, WANG Shengjun, SHAN Kaizheng, HAN Liangliang, YU Haitao. Sagittal Walking Control of Biped Robot Equipped with Artificial Tendon [J]. Journal of Mechanical Engineering, 2024, 60(15): 18-27. |
[5] | ZHAO Hongyue, SHI Chuang, GUO Hongwei, LIU Rongqiang. Dynamic Characteristics Analysis of Spatial Large Deployable Annular Tensegrity Mechanism [J]. Journal of Mechanical Engineering, 2024, 60(12): 344-354. |
[6] | ZHANG Qixiang, WANG Jinxiang, ZHANG Yihan, ZHANG Ronglin, JIN Liqiang, YIN Guodong. Key Technologies and Research Progress of Brake-by-wire System for Intelligent Electric Vehicles [J]. Journal of Mechanical Engineering, 2024, 60(10): 339-365. |
[7] | PAN Qiqi, WANG Hongbo, LUO Jingjing, WANG Fuhao. Design and Optimization of Continuum Robot Configuration for Single-port Laparoscopic Surgery [J]. Journal of Mechanical Engineering, 2023, 59(23): 55-67. |
[8] | HUANG Weiwei, ZHANG Xinquan, ZHU Limin. Repetitive-control-based Feedforward Compensation Method for Fast Tool Servo System [J]. Journal of Mechanical Engineering, 2023, 59(21): 43-51. |
[9] | GAO Zhenhai, YU Tong, SUN Tianjun, TANG Minghong, GAO Fei, ZHAO Rui. Humanoid-driven Control Network Model for Longitudinal Autonomous Driving [J]. Journal of Mechanical Engineering, 2023, 59(18): 251-262. |
[10] | MA Long, SUN Han-xu, LI Ming-gang, SUN Ping, ZHANG Wei-zhen, LONG Bing-zheng, SHI Hui-wen. Design and Motion Analysis of a Spherical Robot Having the Ability to Change the Centroid Radially [J]. Journal of Mechanical Engineering, 2022, 58(5): 44-56. |
[11] | LI Lijian, YAO Jiantao, GUO Fei, WANG Yingjia, WANG Lijun. Configuration Design and Compliance Modeling of Hybrid Flexure Hinges [J]. Journal of Mechanical Engineering, 2022, 58(21): 78-91. |
[12] | TAO Yong, LIU Haitao, WANG Tianmiao, HAN Dongming, ZHAO Gang. Research Progress and Industrialization Development Trend of Chinese Service Robot [J]. Journal of Mechanical Engineering, 2022, 58(18): 56-74. |
[13] | Lü Litong, CHEN Zheng, YAO Bin. Parallel-connected Pump-valves Coordinated Electro-hydraulic System: Comparative Study and Motion Control [J]. Journal of Mechanical Engineering, 2022, 58(10): 136-151. |
[14] | ZHANG Yuanxun, HUANG Zedong, HAN Liangliang, GU Chengpeng, ZHANG Wenqi. Design and Analysis of the Crawling and Rolling Characteristics of the Crawling and Rolling Robot for the Lunar Extreme Terrain [J]. Journal of Mechanical Engineering, 2021, 57(3): 35-48. |
[15] | LUO Ani, LIU Heping, LAI Xiaoliang. Diagrams for Stable Configurations of the Basic Tensegrity Unit [J]. Journal of Mechanical Engineering, 2021, 57(23): 47-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||