Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (3): 305-318.doi: 10.3901/JME.2024.03.305
Previous Articles Next Articles
TAI Yuping1, ZHU Xiaoyang1, LI Hongke1, YU Zhihao1, ZHANG Houchao1, ZHANG Fan1, ZHANG Guangming1, ZHAO Juan1, ZHAO Jiawei1, HUANG Youqi2, LAN Hongbo1
Received:
2023-02-15
Revised:
2023-09-01
Online:
2024-02-05
Published:
2024-04-28
CLC Number:
TAI Yuping, ZHU Xiaoyang, LI Hongke, YU Zhihao, ZHANG Houchao, ZHANG Fan, ZHANG Guangming, ZHAO Juan, ZHAO Jiawei, HUANG Youqi, LAN Hongbo. Electric Field Driven Hybrid Micro and Nano 3D Printing of Low Frequency Transparent Electromagnetic Shielding Glass[J]. Journal of Mechanical Engineering, 2024, 60(3): 305-318.
[1] PHAN D T, JUNG C W. Optically transparent and very thin structure against electromangnetic pulse (EMP) using metal mesh and saltwater for shielding windows[J]. Scientific Peports, 2021, 11(1):1-9. [2] PERIYASAMY A P, MUTHUSAMY L P, MILITK? J. Neural network model applied to electromagnetic shielding effectiveness of ultra-light Ni/Cu coated polyester fibrous materials[J]. Scientific Peports, 2022, 12(1):1-14. [3] HE D, ZHANG N, IQBAL A, et al. Multispectral electromagnetic shielding using ultra-thin metal-metal oxide decorated hybrid nanofiber membranes[J]. Communications Materials, 2021, 2(1):1-9. [4] NEDJEM Z, SEGHIER T, HADJADJ A. New multilayer arrangement of dielectric layers for enhancement of the magnetic shielding absorption at low frequency in the near field[J]. Journal of Materials Science:Materials in Electronics, 2016, 27(4):3202-3208. [5] ADRIANO U, BOTTAUSCIO O, ZUCCA M. Material efficiency in magnetic shielding at low and intermediate frequency[J]. IEEE Transactions on Magnetics, 2003, 39(5):3217-3219. [6] CHENG J, ZHANG H, NING M, et al. Emerging materials and designs for low-and multi-band electromagnetic wave absorbers:The search for dielectric and magnetic synergy[J]. Advanced Functional Materials, 2022:2200123. [7] JIA L C, YAN D X, LIU X, et al. Highly efficient and reliable transparent electromagnetic interference shielding film[J]. ACS Applied Materials & Interfaces, 2018, 10(14):11941-11949. [8] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding:A review[J]. Advanced Functional Materials, 2020, 30(47):2000883. [9] LIANG C, GU Z, ZHANG Y, et al. Structural design strategies of polymer matrix composites for electromagnetic interference shielding:A review[J]. Nano-Micro Letters, 2021, 13(1):1-29. [10] XIE Y, LIU S, HUANG K, et al. Ultra-broadband Strong Electromagnetic Interference Shielding with Ferromagnetic Graphene Quartz Fabric[J]. Advanced Materials, 2022:2202982. [11] JIANG D, MURUGADOSS V, WANG Y, et al. Electromagnetic interference shielding polymers and nanocomposites-a review[J]. Polymer Reviews, 2019, 59(2):280-337. [12] WAN Y J, ZHU P L, YU S H, et al. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding[J]. Small, 2018, 14(27):1800534. [13] YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials, 2020, 32(9):1906769. [14] ZHU X, XU Q, Li H, et al. Fabrication of high-performance silver mesh for transparent glass heaters via electric-field-driven microscale 3D Printing and UV-assisted microtransfer[J]. Advanced Materials, 2019, 31:1902479. [15] 周贺飞,兰红波,李红珂,等.基于电场驱动喷射沉积微尺度3D打印制造金属网栅透明电磁屏蔽玻璃的研究[J].机械工程学报, 2019, 55(15):56-63. ZHOU Hefei, LAN Hongbo, LI Hongke, et al. Metal-mesh transparent EMI shielding glass fabricated by electric-field-driven jet deposition micro-scale 3D printing[J]. Journal of Mechanical Engineering, 2019, 55(15):56-63. [16] JIN F, LIU J, ZHAO Y Y, et al. λ/30 inorganic features achieved by multi-photon 3D lithography[J]. Nature Communications, 2022, 13(1):1-10. [17] LIU Z, LI M, DONG X, et al. Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing[J]. Nature Communications, 2022, 13(1):1-11. [18] BUGUÉS-CEBALLOS I, KEHAGIAS N, SOTOMAYOR-TORRES C M, et al. Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor[J]. Solar Energy Materials and Solar Cells, 2014, 127:50-57. [19] CHEN X, WU X, SHAO S, et al. Hybrid printing metal-mesh transparent conductive films with lower energy photonically sintered copper/tin ink[J]. Scientific Reports, 2017, 7(1):1-8. [20] 兰红波,李涤尘,卢秉恒.微纳尺度3D打印[J].中国科学:技术科学, 2015, 45(9):919-940. LAN Hongbo, LI Dichen, LU Bingheng. Micro-and nanoscale 3D printing[J]. Sci Sin Tech,2015,45:919-940. [21] LIASHENKO I, ROSELL-LLOMPART J, CABOT A. Ultrafast 3D printing with submicrometer features using electrostatic jet deflection[J]. Nature communications, 2020, 11(1):1-9. [22] 曹辉,张广明,杨建军,等.基于单平板电极电场驱动喷射沉积微纳3D打印[J].科学通报, 2021, 66(21):2745-2757. CAO Hui, ZHANG Guangming, YANG Jianjun, et al. Electric-field-driven jet deposition micro-nano 3D printing based on a single-plate electrode[J]. Chinese Science Bulletin, 2021, 66(21):2745-2757 [23] 刘明杨,齐习猛,朱晓阳,等.基于电场驱动喷射微3D打印和辊轮辅助热压印制造嵌入式金属网格柔性透明导电薄膜[J].科学通报, 2020, 65(12):1151-1162. LIU Mingyang, QI Ximeng, ZHU Xiaoyang, et al. Fabrication of embedded metal-mesh flexible transparent conductive film via electric-field-driven jet microscale 3D printing and roller-assisted thermal imprinting[J]. Chinese Science Bulletin, 2020, 65(12):1151-1162. [24] 许权,兰红波,赵佳伟,等.基于电场驱动熔融沉积直写和微转印大面积透明电极制造[J].机械工程学报, 2019, 55(23):216-225. XU Quan, LAN Hongbo, ZHAO Jiawei, et al. Large-area transparent electrodes fabricated by combining the electric-field-driven fusion deposition direct writing and micro-transfer[J]. Journal of Mechanical Engineering, 2019, 55(23):216-225. [25] ZHU X, LIU M, QI X, et al. Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing[J]. Advanced Materials, 2021, 33:2007772. [26] ZHANG B, LEE H, BYUN D. Electrohydrodynamic jet printed 3D metallic grid:Toward high-performance transparent electrodes[J]. Advanced Engineering Materials, 2020, 22(5):1901275. [27] LAI Z, ZHAO T, ZHU P, et al. Improved reliability of silver nanowire-based composites by electroplating:A theoretical and experimental study[J]. ACS Applied Electronic Materials, 2021, 3(8):3329-3337. [28] SOERL S, BELLET D, COLEMAN J N. Relationship between material properties and transparent heater performance for both bulk-like and percolative nanostructured networks[J]. ACS Nano, 2014, 8(5):4805-48. |
[1] | FANG Xudong, DENG Wubin, WU Zutang, LI Jin, WU Chen, MAEDA Ryutaro, TIAN Bian, ZHAO Libo, LIN Qijing, ZHANG Zhongkai, HAN Xiangguang, JIANG Zhuangde. Respiration Measurement Technology Based on Inertial Sensors:A Review [J]. Journal of Mechanical Engineering, 2024, 60(20): 1-23. |
[2] | FU Yang, ZHANG Yue, MAO Ying, TANG Xiaohua, CHEN Zugao, XU Hewu, YANG Yupei, GAO Bin, TIAN Guiyun. Feature Boosting Framework for Pipeline Multi-sensing Defects Inspection Using an Intelligent Pig System [J]. Journal of Mechanical Engineering, 2024, 60(20): 51-67. |
[3] | WU Jie, SHEN Yifu, HUANG Guoqiang. Investigation into the Microstructure and Properties of 2024Al TIG Joint with Wire Filler Subjected to Friction Stir Processing [J]. Journal of Mechanical Engineering, 2024, 60(20): 153-161. |
[4] | ZHANG Zhiyong, WANG Yuxiang, HUANG Caixia, WU You, DU Ronghua. Vehicle Lateral Collision Warning Based on Grey Prediction and Kalman Filter [J]. Journal of Mechanical Engineering, 2024, 60(20): 240-250. |
[5] | LIAO Guiwen, ZHANG Yi, WEI Kai, LIU Xiaojun, WANG Wei. Coupling Characteristics of Liquid-solid Two-phase Flow Field Structure and Particle Motion Behavior at Restricted Lubrication Interface [J]. Journal of Mechanical Engineering, 2024, 60(20): 351-360. |
[6] | WANG Xu, JIANG Xingyu, YANG Guozhe, SUN Meng, YU Shenhong, BI Kaihang, ZHAO Rizheng, LIU Weijun. Research on Optimization of Human-Machine Interface Layout of Laser Cleaning Equipment Based on PSO-SSA [J]. Journal of Mechanical Engineering, 2024, 60(20): 372-387. |
[7] | WANG Dexiang, ZHANG Yu, JIANG Jingliang, LIU Xinfu, LIU Guoliang. Tribological Mechanism on the Grinding Interface of Nickel-base Superalloy under Minimum Quantity Lubrication with Ionic Liquid and Palm Oil Based Nanofluids [J]. Journal of Mechanical Engineering, 2024, 60(19): 159-171. |
[8] | LI Pu, LU Daixing. A Review of Co-simulation Algorithm [J]. Journal of Mechanical Engineering, 2024, 60(19): 172-186. |
[9] | WANG Xiaoyu, WEI Zhaocheng, WANG Xueqin, WANG Dong. Geometric Modeling of Residual Materials in Impeller Milling with Double Row Slotting [J]. Journal of Mechanical Engineering, 2024, 60(19): 310-317. |
[10] | WANG Gaojian, LIU Li, KANG Dandan, YE Yanhong, DENG Dean. Effect of Ni Content on Microstructure, Mechanical Properties and Corrosion Behavior of Weathering Steel Weld Metal for High-speed Train Bogies [J]. Journal of Mechanical Engineering, 2024, 60(18): 163-172. |
[11] | ZHANG Mingkang, SHI Wenqing, XU Meizhen, WANG Di, CHEN Jie. Compression and Fluid Pressure Drop Properties of Implicit Surface Cellular Structures [J]. Journal of Mechanical Engineering, 2024, 60(18): 394-406. |
[12] | MA Weijia, ZHU Xiaolong, LIU Qingyao, DUAN Xingguang, LI Changsheng. Artificial Intelligence in Robot-assisted Surgery [J]. Journal of Mechanical Engineering, 2024, 60(17): 22-39. |
[13] | YUAN Xiaoqing, WU Tao, YUAN Xun, WANG Wendong. Research on a Full-body Power-assisted Exoskeleton Control Method Based on GSO-RF Intent Recognition Algorithm [J]. Journal of Mechanical Engineering, 2024, 60(17): 91-101. |
[14] | ZHANG Yuze, ZHAO Jingfu, ZHAO Zhenwei, KANG Rongjie, DAI Jiansheng, SONG Zhibin. Design and Analysis of a Parallel Cable Driven Lower Limb Rehabilitation Robot for Multi Joints Training [J]. Journal of Mechanical Engineering, 2024, 60(17): 111-122. |
[15] | LIANG Xu, ZHANG Jianyong, LI Guotao, SU Tingting, HE Guangping, HOU Zengguang. Redundant Parallel Mechanism for Fracture Reduction Surgery: Design, Modeling and Performance Analysis [J]. Journal of Mechanical Engineering, 2024, 60(17): 133-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||