Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (2): 81-98.doi: 10.3901/JME.2024.02.081
Previous Articles Next Articles
XU Teng1,2, DENG Chunyang1,2, RAN Jiaqi1,2, GONG Feng1,2, TANG Heng1,2
Received:
2023-01-09
Revised:
2023-08-17
Online:
2024-01-20
Published:
2024-04-09
CLC Number:
XU Teng, DENG Chunyang, RAN Jiaqi, GONG Feng, TANG Heng. Research Progress on Strain Rate Effect and Dynamic Constitutive of Metals[J]. Journal of Mechanical Engineering, 2024, 60(2): 81-98.
[1] PARK J M, MOON J, BAE J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy[J]. Materials Science and Engineering:A, 2018, 719:155-163. [2] 胡道春, 王蕾, 王红军.基于修正Johnson-Cook模型的C5191-H磷青铜高速冲裁本构关系[J].塑性工程学报, 2019, 26(4):234-240. HU Daochun, WANG Lei, WANG Hongjun. Constitutive relation in high-speed blanking of C5191-H phosphor bronze based on modified Johnson-Cook model[J]. Journal of Plasticity Engineering, 2019, 26(4):234-240. [3] 高帅, 纪玉杰. 6063铝合金BP神经网络动态力学本构模型[J].沈阳理工大学学报, 2020, 39(4):48-52. GAO Shuai, JI Yujie. Dynamic mechanical constitutive model of 6063 aluminum alloy based on BP neural network[J]. Transactions of Shenyang Ligong University, 2020, 39(4):48-52. [4] 周古昕, 郎玉婧, 杜秀征, 等.高强7A62铝合金动态力学响应及其J-C本构关系[J].中国有色金属学报, 2021, 31(1):21-29. ZHOU Guxin, LANG Yujing, DU Xiuzheng, et al. Dynamic mechanical response and J-C constitutive equation of high strength 7A62 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):21-29. [5] 惠旭龙, 白春玉, 刘小川, 等.宽应变率范围下2A16-T4铝合金动态力学性能[J].爆炸与冲击, 2017, 37(5):871-878. XI Xulong, BAI Chunyu, LIU Xiaochuan, et al. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion and Shock Waves, 2017, 37(5):871-878. [6] 苏楠, 陈明和, 谢兰生, 等. TC2钛合金的动态力学特征及其本构模型[J].材料研究学报, 2021, 35(3):201-208. SU Nan, CHEN Minghe, XIE Lansheng, et al. Dynamic mechanical characteristics and constitutive model of TC2 Ti-alloy[J]. Chinese Journal of Materials Research, 2021, 35(3):201-208. [7] 陈斐洋, 郭鹏程, 胡泽豪, 等.不同温度下AM80镁合金的动态力学响应及本构建模[J].材料导报, 2021, 35(16):16093-16098. CHEN Feiyang, GUO Pengcheng, HU Zehao, et al. Dynamic mechanical response and constitutive modeling of AM80 magnesium alloy at various temperatures[J]. Materials Review, 2021, 35(16):16093-16098. [8] 朱志武, 张光瀚, 卢也森. 42CrMo钢的动态力学行为及高应变率效应的本构模型[J].中国科学(技术科学), 2021, 51(3):249-258. ZHU Zhiwu, ZHANG Guanghan, LU Yesen. Dynamic mechanical response and a constitutive model of 42CrMo steel that incorporates the effects of high strain rates[J]. SCIENTIA SINICA Technologica, 2021, 51(3):249-258. [9] HUH H, LIM J H, PARK S H. High speed tensile test of steel sheets for the stress-strain curve at the intermediate strain rate[J]. International Journal of Automotive Technology, 2009, 10(2):195-204. [10] 沙桂英, 徐永波, 于涛, 等. AZ91镁合金的动态应力-应变行为及其应变率效应[J].材料热处理学报, 2006, 27(4):77-81. SHA Guiying, XU Yongbo, YU Tao, et al. Dynamic stress-strain behavior of AZ91 magnesium alloy and its dependence on strain rate[J]. Transactions of Materials and Heat Treatment, 2006, 27(4):77-81. [11] 邓云飞, 张永, 吴华鹏, 等. 6061-T651铝合金动态力学性能及J-C本构模型的修正[J].机械工程学报, 2020, 56(20):74-81. DENG Yunfei, ZHANG Yong, WU Huapeng, et al. Dynamic mechanical properties and modification of J-C constitutive model of 6061-T651 aluminum alloy[J]. Journal of Mechanical Engineering, 2020, 56(20):74-81. [12] 张连生, 黄风雷, 段卓平, 等.材料动态强度的应变率效应及其唯象本构模型[C]//第十届全国冲击动力学学术会议.太原:中国力学学会, 2011. ZHANG Liansheng, HUANG Fenglei, DUAN Zhuoyping, et al. The strain-rate effects of dynamic yielding of materials and modified Johnson-Cook constitutive relatioins[C]//The International Symposium on Shock Impact Dyplamics. Taiyuan:Chinese Society of Mechanics, 2011. [13] 朱俊儿.应变率相关的高强钢板材屈服准则与失效模型研究及应用[D].北京:清华大学, 2015. ZHU Juner. Modeling the strain-rate dependent yielding and failure behavior of High Strength Steel sheets[D]. Beijing:Tsinghua University, 2015. [14] 白春玉, 葛宇静, 惠旭龙, 等.金属材料的中低应变率动态拉伸试验方法研究与应用[J].航空科学技术, 2020, 31(12):33-41. BAI Chunyu, GE Yujing, XI Xulong, et al. Research and application of dynamic tensile test method for metal materials at intermediate and low strain rates[J]. Aeronautical Science and Technology, 2020, 31(12):33-41. [15] 高宁, 朱志武.铝合金应变率效应综述及其机理研究[J].应用数学和力学, 2014, 35(S1):208-212. GAO Ning, ZHU Zhiwu. Review on strain rate effect of aluminum alloy and its mechanism[J]. Applied Mathematics and Mechanics, 2014, 35(S1):208-212. [16] 刘旭红, 黄西成, 陈裕泽, 等.强动载荷下金属材料塑性变形本构模型评述[J].力学进展, 2007, 37(3):361-374. LIU Xuhong, HUANG Xicheng, CHEN Yuze, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading[J]. Advances in Mechanics, 2007, 37(3):361-374. [17] FAN H D, WANG Q Y, EL-AWADY J A, et al. Strain rate dependency of dislocation plasticity[J]. Nature Communications, 2021, 12(1):1845. [18] 唐长国, 朱金华, 周惠久.金属材料屈服强度的应变率效应和热激活理论[J].金属学报, 1995, 31(6):248-253. TANG Changguo, ZHU Jinhua, ZHOU Huijiu. Strain rate effect and thermal activation theory on yield strength of metallic materials[J]. Acta Metallurgica Sinica, 1995, 31(6):248-253. [19] 闫洪霞.基于位错物理的金属塑性变形本构关系的研究[D].杭州:浙江大学, 2011. Yan Hongxia. Physical constitutive relation of plastic deformation based on dislocation for metal[D]. Hangzhou:Zhejiang University, 2011. [20] 闫洪霞, 高重阳. BCC金属物理型动态本构关系及在钽中的应用[J].兵工学报, 2010, 31(S1):149-153. Yan Hongxia. A physically-based constitutive model for BCC metals and its application in tantalum[J]. Acta Armamentarii, 2010, 31(S1):149-153. [21] 郭伟国, 田宏伟.几种典型铝合金应变率敏感性及其塑性流动本构模型[J].中国有色金属学报, 2009, 19(1):56-61. GUO Weiguo, TIAN Hongwei. Strain rate sensitivity and constitutive models of several typical aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(1):56-61. [22] PÉ;REZ-BERGQUIST S J, GRAY G T, CERRETA E K, et al. The dynamic and quasi-static mechanical response of three aluminum armor alloys:5059, 5083 and 7039[J]. Materials Science & Engineering A, 2011, 528(29):8733-8741. [23] TSAI S P, TSAI Y T, CHEN Y W, et al. High-entropy CoCrFeMnNi alloy subjected to high-strain-rate compressive deformation[J].Materials Characterization, 2019, 147:193-198. [24] 夏雨, 王快社, 胡平, 等.纯钼金属高温塑性变形行为研究进展[J].材料导报, 2019, 33(19):3277-3289. XIA Yu, WANG Kuaishe, HU Ping, et al. Research progress on plastic deformation behavior of pure molybdenum metal[J]. Materials Review, 2019, 33(19):3277-3289. [25] VOYIADJIS G Z, ABED F H. A coupled temperature and strain rate dependent yield function for dynamic deformations of bcc metals[J]. International Journal of Plasticity, 2006, 22(8):1398-1431. [26] 王运, 张昌明, 张昱.航空Al7050合金的静动态力学特性研究及JC本构模型构建[J].材料导报, 2021, 35(10):10096-10102. WANG Yun, ZHANG Changming, ZHANG Yu. Study on static and dynamic mechanical properties of aviation Al7050 alloy and construction of JC constitutive model[J]. Materials Review, 2021, 35(10):10096-10102. [27] 包志强, 张勇, 张柱柱, 等. 38CrMoAl高强度钢动态力学性能及其J-C本构模型[J]. 机械工程材料, 2021, 45(5):76-83. BAO Zhiqiang, ZHANG Yong, ZHANG Zhuzhu, et al. Dynamic mechanical properties and J-C constitutive model for 38CrMoAl high strength steel[J]. Materials for Mechanical Engineering, 2021, 45(5):76-83. [28] HUH H, YOON J H, PARK C G, et al. Correlation of microscopic structures to the strain rate hardening of SPCC steel[J]. International Journal of Mechanical Sciences, 2010, 52(5):745-753. [29] BAIK S I, GUPTA R K, KUMAR K S, et al. Temperature increases and thermoplastic microstructural evolution in adiabatic shear-bands in a high-strength and high-toughness 10 wt.% Ni Steel[J]. Social Science Electronic Publishing, 2021, 205:15. [30] 武永甫, 李淑慧, 侯波, 等.铝合金7075-T651动态流变应力特征及本构模型[J].中国有色金属学报, 2013, 23(3):658-665. WU Yongfu, LI Shuhui, HOU Bo, et al. Dynamic flow stress characteristics and constitutive model of aluminum 7075-T651[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(3):658-665. [31] WANG M, XU X Y, WANG H Y, et al. Evolution of dislocation and twin densities in a Mg alloy at quasi-static and high strain rates[J]. Acta Materialia, 2020, 201:102-113. [32] ZHAO S, LI Z, ZHU C, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy[J]. Science Advances, 2021, 7(5):3108-3137. [33] 毛泽宁.纯铜塑性行为的晶粒尺寸与应变速率效应研究[D].南京:南京理工大学, 2018. Mao Zening. Effect of grain size and strain rate on plastic behavior of pure copper[D]. Nanjing:Nanjing University of Science And Technology, 2018. [34] 雷经发, 许孟, 刘涛, 等.高应变率下6061铝合金力学性能及本构模型研究[J].兵器材料科学与工程, 2019, 42(1):74-78. LEI Jingfa, XU Meng, LIU Tao, et al. Mechanical properties and constitutive model of 6061 aluminum alloy at high strain rate[J]. Ordnance Material Science and Engineering, 2019, 42(1):74-78. [35] 彭建祥, 李英雷, 李大红.纯钽动态本构关系的实验研究[J].爆炸与冲击, 2003, 23(2):183-187. PENG Jianxiang, LI Yinglei, LI Dahong. An experimental study on the dynamic constitutive relation of tantalum[J]. Explosion and Shock Waves, 2003, 23(2):183-187. [36] 郭伟国.锻造钽的性能及动态流动本构关系[J].稀有金属材料与工程, 2007, 36(1):23-27. Guo Weiguo. The characteristics of forged tantalun and dynamic constitutive modelling[J]. Rare Metal Materials and Engineering, 2007, 36(1):23-27. [37] 高宁. 5083铝合金宽应变率下拉压力学性能及其本构模型描述[D].成都:西南交通大学, 2016. Gao Ning. Tenson and compresson mechnical properties and constitutive model under wide strain rates of 5083 aluminum alloy[D]. Chengdu:Southwest Jiaotong University, 2016. [38] 刘建秀, 高红霞, 韩长生, 等.高应变率下Cu-P/M摩擦材料正向和反向应变率效应[J].机械科学与技术, 2005, 24(2):230-232, 247. LIU Jianxiu, GAO Hongxia, HAN Changsheng, et al. Positive and negative strain-rate effect for Cu-P/M friction materials at high htrain rates[J]. Mechanical Science and Technology for Aerospace Engineering 2005, 24(2):230-232, 247. [39] BRUSCHI S, ALTAN T, BANABIC D, et al. Testing and modelling of material behaviour and formability in sheet metal forming[J]. CIRP Annals-Manufacturing Technology, 2014, 63(2):727-749. [40] 任冀宾, 汪存显, 张欣玥, 等. 2A97铝锂合金的Johnson-Cook本构模型及失效参数[J].华南理工大学学报(自然科学版), 2019, 47(8):136-144. REN Jibin, WANG Cunxian, ZHANG Xinyue, et al. Johnson-Cook constitutive model and failure parameters of 2A97 Al-Li alloy[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(8):136-144. [41] 张磊.板料虚拟成形应用技术研究[D].济南:山东大学, 2006. ZHANG Lei. Research on application technology of sheet metal virtual forming[D]. Jinan:Shandong University, 2006. [42] CHEN S R, GRAY G T. Constitutive behavior of tantalum and tantalum-tungsten alloys[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1996, 27(10):2994-3006. [43] LEE B J, VECCHIO K S, AHZI S, et al. Modeling the mechanical behavior of tantalum[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1997, 28(1):113-122. [44] 崔奎虎.航空钛合金高应变率条件下SHPB压杆实验与仿真[D].天津:天津大学, 2013. CUI Kuihu. SHPB Experiment and Simulation for Aeronautic Titanium Alloys under high strain rates[D]. Tianjin:Tianjin University, 2013. [45] 彭鸿博, 张宏建.金属材料本构模型的研究进展[J].机械工程材料, 2012, 36(3):5-10, 75. PENG Hongbo, ZHANG Hongjian. Research development of the constitutive models of metal materials[J]. Materials For Mechanical Engineering, 2012, 36(3):5-10, 75. [46] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21:541-548. [47] KHAN A S, HUANG S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104 s-1[J]. International Journal of Plasticity, 1992, 8(4):397-424. [48] KHAN A S, ZHANG H, TAKACS L. Mechanical response and modeling of fully compacted nanocrystalline iron and copper[J]. International Journal of Plasticity, 2000, 16(12):1459-1476. [49] FARROKH B, KHAN A S. Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al:Synthesis, experiment, and constitutive modeling[J]. International Journal of Plasticity, 2009, 25(5):715-732. [50] KHAN A S, LIU H. A new approach for ductile fracture prediction on Al 2024-T351 alloy[J]. International Journal of Plasticity, 2012, 35:1-12. [51] MOLINARI A, RAVICHANDRAN G. Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length[J]. Mechanics of Materials, 2005, 37(7):737-752. [52] FIELDS D S, BACKOFEN W A. Determination of strain hardening characteristics by torsion testing[J]. ASTM, Proc. Am. Soc. Test Mater., 1957, 57:1259-1272. [53] 李双蓓, 吴园, 赵璇, 等.金属材料宽应变率下动态本构模型及其扩展有限元应用[J].广西大学学报(自然科学版), 2021, 46(4):905-916. LI Shuangbei, WU Yuan, ZHAO Xuan, et al. Dynamic constitutive model of metals at wide strain rates and its extended finite element implementation[J]. Journal of Guangxi University (Natural Science Edition), 2021, 46(4):905-916. [54] LIN Y C, CHEN X M, LIU G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel[J]. Materials Science & Engineering A, 2010, 527(26):6980-6986. [55] KHAN A S, LIANG R. Behaviors of three BCC metal over a wide range of strain rates and temperatures:experiments and modeling[J]. International Journal of Plasticity, 1999, 15(10):1089-1109. [56] ZHANG Y B, YAO S, HONG X, et al. A modified Johnson-Cook model for 7N01 aluminum alloy under dynamic condition[J]. Journal of Central South University, 2017, 24(11):2550-2555. [57] TAN J, ZHAN M, LIU S, et al. A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates[J]. Materials Science and Engineering:A, 2015, 631(1):214-219. [58] ZHANG H, WEN W, CUI H. Behaviors of IC10 alloy over a wide range of strain rates and temperatures:Experiments and modeling[J]. Materials Science & Engineering A, 2008, 504(1-2):99-103. [59] MEYERS M A, CHEN Y J, MARQUIS F D S. High-strain, high-strain-rate behavior of tantalum[J]. Metallurgical and Materials Transactions A, 1995, 26:2493-2501. [60] 李恒奎, 张光瀚, 赵晓春, 等.基于改进Johnson-Cook模型的5083P-0铝合金动态本构关系研究[J].宇航材料工艺, 2021, 51(3):17-24. LI Hengkui, ZHANG Guanghan, ZHAO Xiaochun, et al. Dynamic constitutive relation of 5083P-0 aluminum alloy based on improved Johnson-Cook model[J]. Aerospace Materials & Technology, 2021, 51(3):17-24. [61] YU W, LI Y, CAO J, et al. The dynamic compressive behavior and constitutive models of a near α TA23 titanium alloy[J]. Materials Today Communications, 2021, 29:102863. [62] 徐俊瑞, 文智生, 苏继爱, 等.镁合金板材高速率Johnson-Cook本构模型的建立[C]//创新塑性加工技术, 推动智能制造发展--第十五届全国塑性工程学会年会暨第七届全球华人塑性加工技术交流会学术会议论文集.济南:中国机械工程学会, 2017:336-339. XU Junrui, WEN Zhisheng, SU Jiai, et al. Johnson-Cook constitutive model of magnesium alloy sheet at high strain rate[C]//Innovation of Plastic processing Technology, Promote the development of intelligent Manufacturing-the 15th National Plastic Engineering Society annual Conference and the 7th Global Chinese Plastic Processing Technology Exchange Conference. Jinan:Chinese Mechanical Engineering Society, 2017:336-339. [63] MIRONE G, BARBAGALLO R. How sensitivity of metals to strain, strain rate and temperature affects necking onset and hardening in dynamic tests[J]. International Journal of Mechanical Sciences, 2021, 195:106249. [64] GAO N, ZHU Z, XIAO S, et al. A constitutive model research based on dislocation mechanism of 5083 aluminum alloy[J]. Journal of Mechanics, 2019, 35(2):145-152. [65] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825. [66] ZERILLI F J, ARMSTRONG R W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations[J]. Journal of Applied Physics, 1990, 68(4):1580-1591. [67] ZHANG H, WEN W, CUI H, et al. A modified Zerilli-Armstrong model for alloy IC10 over a wide range of temperatures and strain rates[J]. Materials Science & Engineering A, 2009, 527(1-2):328-333. [68] ZHANG H, WEN W, CUI H, et al. A study on flow behaviors of alloy IC10 over a wide range of temperatures and strain rates[J]. TMS Annual Meeting, 2009, 1:219-226. [69] SAMANTARAY D, MANDAL S, BORAH U, et al. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science & Engineering A, 2009, 526(1-2):1-6. [70] FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metallurgica, 1988, 36(1):81-93. [71] VOYIADJIS G Z, ABED F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency[J]. Mechanics of Materials, 2005, 37(2-3):355-378. [72] VOYIADJIS G Z, ALMASRI A H. A physically based constitutive model for fcc metals with applications to dynamic hardness[J]. Mechanics of Materials, 2008, 40(6):549-563. [73] TABEI A, ABED F H, VOYIADJIS G Z, et al. Constitutive modeling of Ti-6Al-4V at a wide range of temperatures and strain rates[J]. European Journal of Mechanics/A Solids, 2017, 63:128-135. [74] CAI M C, NIU L S, MA X F, et al. A constitutive description of the strain rate and temperature effects on the mechanical behavior of materials[J]. Mechanics of Materials, 2010, 42(8):774-781. [75] NEMAT-NASSER S, ISACS J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys[J]. Acta Materialia, 1997, 45(3):907-919. [76] NEMAT-NASSER S, LI Y. Flow stress of f.c.c. polycrystals with application to OFHC Cu[J]. Acta Materialia, 1998, 46(2):565-577. [77] NEMAT-NASSER S, GUO W, LIU M. Experimentally-based micromechanical modeling of dynamic response of molybdenum[J]. Scripta Materialia, 1999, 40(7):859-872. [78] NEMAT-NASSER S, GUO W G, CHENG J Y. Mechanical properties and deformation mechanisms of a commercially pure titanium[J]. Acta Materialia, 1999, 47(13):3705-3720. [79] PENG Z S, JI C H, PEI W C, et al. Constitutive relationship of TC4 titanium alloy based on back propagating (BP) neural network (NN)[J]. Metalurgija, 2021, 60(3-4):277-280. [80] 钟明君, 王克鲁, 鲁世强, 等. MoNb合金高温变形行为及BP神经网络本构模型研究[J].塑性工程学报, 2020, 27(12):177-182. ZHONG Mingjun, WANG Kelu, LU Shiqiang, et al. Study on high temperature deformation behavior and BP neural network constitutive model of MoNb alloy[J]. Journal of Plasticity Engineering, 2020, 27(12):177-182. [81] 张小波, 王克鲁, 鲁世强, 等.基于BP神经网络的Ti3Al基合金本构关系模型的建立[J].特种铸造及有色合金, 2013, 33(3):224-226. ZHANG Xiaobo, WANG Kelu, LU Shiqiang, et al. Modeling of constitutive relationship of Ti3Al-based alloy based on BP neural network[J]. Special Casting & Nonferrous Alloys, 2013, 33(3):224-226. [82] 孙宇, 曾卫东, 赵永庆, 等.基于BP神经网络Ti600合金本构关系模型的建立[J].稀有金属材料与工程, 2011, 40(2):220-224. SUN Yu, ZENG Weidong, ZHAO Yongqing, et al. Modeling of constitutive relationship of Ti600 alloy using BP artificial neural network[J]. Rare Metal Materials and Engineering, 2011, 40(2):220-224. [83] YAN J, PAN Q L, LI A D, et al. Flow behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(3):638-647. [84] 冯怡爽, 何霁, 韩国丰, 等.金属板材塑性本构关系的深度学习预测方法及建模[J].塑性工程学报, 2021, 28(6):34-46. FENG Yishuang, HE Ji, HAN Guofeng, et al. Deep learning predicting method and modeling of plastic constitutive relation of sheet metal[J]. Journal of Plasticity Engineering, 2021, 28(6):34-46. [85] 罗锐, 曹赟, 邱宇, 等.基于BP人工神经网络喷射成形7055铝合金的本构模型[J].航空材料学报, 2021, 41(1):35-44. LUO Rui, CAO Yun, QIU Yu, et al. Investigation of constitutive model of as-extruded spray-forming 7055 aluminum alloy based on BP artificial neural network[J]. Journal of Aeronautical Materials, 2021, 41(1):35-44. [86] 唐学峰, 黄振, 温红宁, 等.基于深度神经网络的TA15高温拉伸变形行为精确预测[J].锻压技术, 2021, 46(9):67-76. TANG Xuefeng, HUANG Zhen, WEN Hongning, et al. Accurate prediction on TA15 high temperature tensile deformation behavior based on deep neural network[J]. Forging & Stamping Technology, 2021, 46(9):67-76. [87] GAO T J, ZHAO D, ZHANG T W, et al. Strain-rate-sensitive mechanical response, twinning, and texture features of NiCoCrFe high-entropy alloy:Experiments, multi-level crystal plasticity and artificial neural networks modeling[J]. Journal of Alloys and Compounds, 2020, 845:14. [88] 陈明和, 王宁.高强铝合金热塑性变形本构关系研究现状及发展趋势[J].中国机械工程, 2020, 31(8):997-1007. CHEN Minghe, WANG Ning. Current research and development trends in constitutive relation for high strength aluminum alloys in hot plastic deformation[J]. China Mechanical Engineering, 2020, 31(8):997-1007. [89] LIU X, TIAN S, TAO F, et al. A review of artificial neural networks in the constitutive modeling of composite materials[J]. Composites Part B Engineering, 2021, 224(3):109152. |
[1] | FANG Xudong, DENG Wubin, WU Zutang, LI Jin, WU Chen, MAEDA Ryutaro, TIAN Bian, ZHAO Libo, LIN Qijing, ZHANG Zhongkai, HAN Xiangguang, JIANG Zhuangde. Respiration Measurement Technology Based on Inertial Sensors:A Review [J]. Journal of Mechanical Engineering, 2024, 60(20): 1-23. |
[2] | FU Yang, ZHANG Yue, MAO Ying, TANG Xiaohua, CHEN Zugao, XU Hewu, YANG Yupei, GAO Bin, TIAN Guiyun. Feature Boosting Framework for Pipeline Multi-sensing Defects Inspection Using an Intelligent Pig System [J]. Journal of Mechanical Engineering, 2024, 60(20): 51-67. |
[3] | WU Jie, SHEN Yifu, HUANG Guoqiang. Investigation into the Microstructure and Properties of 2024Al TIG Joint with Wire Filler Subjected to Friction Stir Processing [J]. Journal of Mechanical Engineering, 2024, 60(20): 153-161. |
[4] | ZHANG Zhiyong, WANG Yuxiang, HUANG Caixia, WU You, DU Ronghua. Vehicle Lateral Collision Warning Based on Grey Prediction and Kalman Filter [J]. Journal of Mechanical Engineering, 2024, 60(20): 240-250. |
[5] | LIAO Guiwen, ZHANG Yi, WEI Kai, LIU Xiaojun, WANG Wei. Coupling Characteristics of Liquid-solid Two-phase Flow Field Structure and Particle Motion Behavior at Restricted Lubrication Interface [J]. Journal of Mechanical Engineering, 2024, 60(20): 351-360. |
[6] | WANG Xu, JIANG Xingyu, YANG Guozhe, SUN Meng, YU Shenhong, BI Kaihang, ZHAO Rizheng, LIU Weijun. Research on Optimization of Human-Machine Interface Layout of Laser Cleaning Equipment Based on PSO-SSA [J]. Journal of Mechanical Engineering, 2024, 60(20): 372-387. |
[7] | WANG Dexiang, ZHANG Yu, JIANG Jingliang, LIU Xinfu, LIU Guoliang. Tribological Mechanism on the Grinding Interface of Nickel-base Superalloy under Minimum Quantity Lubrication with Ionic Liquid and Palm Oil Based Nanofluids [J]. Journal of Mechanical Engineering, 2024, 60(19): 159-171. |
[8] | LI Pu, LU Daixing. A Review of Co-simulation Algorithm [J]. Journal of Mechanical Engineering, 2024, 60(19): 172-186. |
[9] | WANG Xiaoyu, WEI Zhaocheng, WANG Xueqin, WANG Dong. Geometric Modeling of Residual Materials in Impeller Milling with Double Row Slotting [J]. Journal of Mechanical Engineering, 2024, 60(19): 310-317. |
[10] | WANG Gaojian, LIU Li, KANG Dandan, YE Yanhong, DENG Dean. Effect of Ni Content on Microstructure, Mechanical Properties and Corrosion Behavior of Weathering Steel Weld Metal for High-speed Train Bogies [J]. Journal of Mechanical Engineering, 2024, 60(18): 163-172. |
[11] | ZHANG Mingkang, SHI Wenqing, XU Meizhen, WANG Di, CHEN Jie. Compression and Fluid Pressure Drop Properties of Implicit Surface Cellular Structures [J]. Journal of Mechanical Engineering, 2024, 60(18): 394-406. |
[12] | MA Weijia, ZHU Xiaolong, LIU Qingyao, DUAN Xingguang, LI Changsheng. Artificial Intelligence in Robot-assisted Surgery [J]. Journal of Mechanical Engineering, 2024, 60(17): 22-39. |
[13] | YUAN Xiaoqing, WU Tao, YUAN Xun, WANG Wendong. Research on a Full-body Power-assisted Exoskeleton Control Method Based on GSO-RF Intent Recognition Algorithm [J]. Journal of Mechanical Engineering, 2024, 60(17): 91-101. |
[14] | ZHANG Yuze, ZHAO Jingfu, ZHAO Zhenwei, KANG Rongjie, DAI Jiansheng, SONG Zhibin. Design and Analysis of a Parallel Cable Driven Lower Limb Rehabilitation Robot for Multi Joints Training [J]. Journal of Mechanical Engineering, 2024, 60(17): 111-122. |
[15] | LIANG Xu, ZHANG Jianyong, LI Guotao, SU Tingting, HE Guangping, HOU Zengguang. Redundant Parallel Mechanism for Fracture Reduction Surgery: Design, Modeling and Performance Analysis [J]. Journal of Mechanical Engineering, 2024, 60(17): 133-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||