Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (2): 62-80.doi: 10.3901/JME.2024.02.062
Previous Articles Next Articles
CHEN Xin1, YANG Lifei1, YU Xue2, GONG Yingying1
Received:
2023-01-25
Revised:
2023-07-16
Online:
2024-01-20
Published:
2024-04-09
CLC Number:
CHEN Xin, YANG Lifei, YU Xue, GONG Yingying. Review of the Progress and Application on the GTN Meso-damage Model[J]. Journal of Mechanical Engineering, 2024, 60(2): 62-80.
[1] 余寿文, 冯西桥.损伤力学[M]. 北京:清华大学出版社, 1997. YU Shouwen, FENG Xiqiao. Damage mechanics[M]. Beijing:Tsinghua University Press, 1997. [2] GATEA S, OU H, LU B, et al. Modelling of ductile fracture in single point incremental forming using a modified GTN model[J]. Engineering Fracture Mechanics, 2017, 186:59-79. [3] 尚晓晴. 316LN钢空洞损伤的微观机理与热变形断裂准则的研究[D].上海:上海交通大学, 2019. SHANG Xiaoqing. Research on the micro-mechanics of void damage and the modeling of ductile fracture for hot deformation of the 316LN steel[D]. Shanghai:Shanghai Jiao Tong University, 2019. [4] YING Liang, LIU Wenquan, WANG Dantong, et al. Parameter calibration of GTN damage model and formability analysis of 22MnB5 in hot forming process[J]. Journal of Materials Engineering and Performance, 2017, 26(11):5155-5165. [5] YING Liang, WANG Dantong, LIU Wenquan, et al. On the numerical implementation of a shear modified GTN damage model and its application to small punch test[J]. International Journal of Material Forming, 2018, 11:527-539. [6] ABBASI M, SHAFAAT M, KETABCHI M, et al. application of the GTN model to predict the forming limit diagram of IF-steel[J]. Journal of Mechanical Science & Technology, 2012, 26(2):345-352. [7] RAMAZANI A, ABBASI M, PRAHL U, et al. Failure analysis of DP600 steel during the cross-die test[J]. Computational Materials Science, 2012, 64:101-105. [8] LIU J, LIU W, XUE W. Forming limit diagram prediction of AA5052/polyethylene/AA5052 sandwich sheets[J]. Materials & Design, 2013, 46:112-120. [9] BRUNET M, MGUIL S, MORESTIN F. Analytical and experimental studies of necking in sheet metal forming processes[J]. Journal of Materials Processing Technology, 1998, 80-81:40-46. [10] GANJIANI M. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle[J]. European Journal of Mechanics-A/Solids, 2020, 84:104048. [11] BAO Y, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1):81-98. [12] PENG Z, ZHAO H, LI X. New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality[J]. International Journal of Plasticity, 2021, 145:103057. [13] LOU Y, HUH H. Evaluation of ductile fracture criteria in a general three-dimensional stress state considering the stress triaxiality and the lode parameter[J]. Acta Mechanica Solida Sinica, 2013, 26(6):642-658. [14] KIRAN R, KHANDELWAL K. A triaxiality and Lode parameter dependent ductile fracture criterion[J]. Engineering Fracture Mechanics, 2014, 128:121-138. [15] BRÜNIG M, BRENNER D, GERKE S. Stress state dependence of ductile damage and fracture behavior:Experiments and numerical simulations[J]. Engineering Fracture Mechanics, 2015, 141:152-169. [16] KAMI A, DARIANI B M, VANINI A S, et al. Application of a GTN damage model to predict the fracture of metallic sheets subjected to deep-drawing[J]. Proceedings of the Romanian Academy-Series A:Mathematics, Physics, Technical Sciences, Information Science, 2014, 15(3):300-309. [17] AYATOLLAHI M R, DARABI A C, CHAMANI H R, et al. 3D micromechanical modeling of failure and damage evolution in dual phase steel based on a real 2D microstructure[J]. Acta Mechanica Solida Sinica, 2016, 29(1):95-110. [18] MCCLINTOCK F A. A criterion for ductile fracture by the growth of holes[J]. Journal of Applied Mechanics, 1968, 35:363-371. [19] RICE J R, TRACEY D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3):201-217. [20] THOMASON P F. A theory for ductile fracture by internal necking of cavities[J]. Journal of the Institute of Metals, 1968, 96(12):360-365. [21] GURSON A L. Continuum theory of ductile rupture by void nucleation and growth:Part I-Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1):297-300. [22] GURSON A L. Porous rigid-plastic materials containing rigid inclusions-Yield function, plastic potential, and void nucleation[J]. Physical Metallurgy of Fracture, 1978:357-364. [23] 黄建科.金属成形过程的细观损伤力学模型及韧性断裂准则研究[D].上海:上海交通大学, 2009. HUANG Jianke. Study on meso. damage model and ductile fracture criterion in metal forming processes[D]. Shanghai:Shanghai Jiao Tong University, 2009. [24] TVERGAARD V. Influence of voids on shear band instabilities under plane strain conditions[J]. International Journal of Fracture, 1981, 17(4):389-407. [25] TVERGAARD V. Influence of void nucleation on ductile shear fracture at a free surface[J]. Journal of the Mechanics and Physics of Solids, 1982, 30(6):399-425. [26] CHU C, NEEDLEMAN A. Void nucleation effects in biaxially stretched sheets[J]. Journal of Engineering Materials and Technology, 1980, 102(3):249. [27] GOLOGANU M, LEBLOND J B, DEVAUX J. Approximate models for ductile metals containing non-spherical voids-Case of axisymmetric prolate ellipsoidal cavities[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(11):1723-1754. [28] PARDOEN T. Numerical simulation of low stress triaxiality ductile fracture[J]. Computers & Structures, 2006, 84(26-27):1641-1650. [29] MEAR M E, Hutchinson J W. Influence of yield surface curvature on flow localization in dilatant plasticity[J]. Mechanics of Materials, 1985, 4(3):395-407. [30] LASSANCE D, FABRÈGUE D, DELANNAY F, et al. Micromechanics of room and high temperature fracture in 6xxx Al alloys[J]. Progress in Materials Science, 2007, 52(1):62-129. [31] 姜薇.基于细观损伤机理的韧性断裂研究[D].西安:西北工业大学, 2016. JIANG Wei. Study of ductile fracture based on meso-damage mechanisms[D]. Xi'an:Northwestern Polytechnical University, 2016. [32] BROCKS W, SUN D Z, HÖNIG A. Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic materials[J]. International Journal of Plasticity, 1995, 11(8):971-989. [33] PARDOEN T, HUTCHINSON J W. An extended model for void growth and coalescence[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(12):2467-2512. [34] XUE Liang. Constitutive modeling of void shearing effect in ductile fracture of porous materials[J]. Engineering Fracture Mechanics, 2007, 75(11):3343-3366. [35] ACHOURI M, GERMAIN G, DAL SANTO, et al. Experimental characterization and numerical modeling of micromechanical damage under different stress states[J]. Materials & Design, 2013, 50:207-222. [36] GATEA S, LU B, OU H, et al. Numerical simulation and experimental investigation of ductile fracture in SPIF using modified GTN model[C]//4th International Conference on New Forming Technology (ICNFT 2015), MATEC Web of Conferences, EDP Sciences, 2015, 21:04013. [37] CAO T, MAIRE E, VERDU C, et al. Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests-Application to the identification of a shear modified GTN model[J]. Computational Materials Science, 2014, 84:175-187. [38] NAHSHON K, HUTCHINSON J W. Modification of the Gurson model for shear failure[J]. European Journal of Mechanics, 2008, 27(1):1-17. [39] SUN Q, ZAN D, CHEN J, et al. Analysis of edge crack behavior of steel sheet in multi-pass cold rolling based on a shear modified GTN damage model[J]. Theoretical and Applied Fracture Mechanics, 2015, 80:259-266. [40] 孙权, 陈建钧, 李晓雪, 等.剪切修正GTN模型在小冲杆试验中的应用研究[J].机械工程学报, 2014, 50(24):79-85. SUN Quan, CHEN Jianjun, LI Xiaoxue, et al. Study on the application of shear modified GTN model to small punch test[J]. Journal of Mechanical Engineering, 2014, 50(24):79-85. [41] SUN Q, LU Y, CHEN J, et al. Identification of material parameters of a shear modified GTN damage model by small punch test[J]. International Journal of Fracture, 2020, 222:25-35. [42] NIELSEN K L, TVERGAARD V. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model[J]. Engineering Fracture Mechanics, 2010, 77(7):1031-1047. [43] MALCHER L, PIRES F, JMACD S. An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality[J]. International Journal of Plasticity, 2012, 30-31:81-115. [44] MALCHER L, PIRES F, JMACD S. An extended GTN model for ductile fracture under high and low stress triaxiality[J]. International Journal of Plasticity, 2014, 54(2):193-228. [45] ZHOU J, GAO X, SOBOTKA J C, et al. On the extension of the Gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions[J]. International Journal of Solids and Structures, 2014, 51(18):3273-3291. [46] WANG S, CHEN Z, DONG C. Tearing failure of ultra-thin sheet-metal involving size effect in blanking process:Analysis based on modified GTN model[J]. International Journal of Mechanical Sciences, 2017, 133:288-302. [47] ZHAO P, CHEN Z, DONG C. Investigation and prediction of tearing failure during extrusion based on a modified shear damage model[J]. Mechanics of Materials, 2017, 112:28-39. [48] JIANG Wei, LI Yazhi, SU Jie. Modified GTN model for a broad range of stress states and application to ductile fracture[J]. European Journal of Mechanics-A/Solids, 2016, 57:132-148. [49] LEMAITRE J. A continuous damage mechanics model for ductile fracture[J]. Transactions of the Asme Journal of Engineering Materials & Technology, 1985, 107(1):83-89. [50] LEMAITRE J, DESMORAT R, Sauzay M. Anisotropic damage law of evolution[J]. European Journal of Mechanics, 2000, 19(2):187-208. [51] Yang X, LI Y, Jiang W, et al. Ductile fracture prediction of additive manufactured Ti6Al4V alloy based on an extended GTN damage model[J]. Engineering Fracture Mechanics, 2021, 256(4):107989. [52] 吴鹤.筒形件强力旋压损伤模型及韧性断裂行为研究[D].哈尔滨:哈尔滨工业大学, 2021. WU He. Study on damage model and ductile fracture behavior for tube power spinning[D]. Harbin:Harbin Institute of Technology, 2021. [53] MALCHER L, REIS F J P, ANDRADE PIRES F M, et al. Evaluation of shear mechanisms and influence of the calibration point on the numerical results of the GTN model[J]. International Journal of Mechanical Sciences, 2013, 75:407-422. [54] ZAO H, HAO Z, YH A. An improved shear modified GTN model for ductile fracture of aluminium alloys under different stress states and its parameters identification[J]. International Journal of Mechanical Sciences, 2021, 192:106081. [55] GULLERUD A S, GAO X, DODDS R H, et al. Simulation of ductile crack growth using computational cells:numerical aspects[J]. Engineering Fracture Mechanics, 2000, 66(1):65-92. [56] ACHOURI M, GERMAIN G, DAL SANTO P, et al. Implementation and validation of a gurson damage model modified for shear loading:Effect of void growth rate and mesh size on the predicted behavior[J]. Key Engineering Materials, 2012, 504-506:691-696. [57] SLIMANE A, BOUCHOUICHA B, BENGUEDIAB M, et al. Parametric study of the ductile damage by the Gurson-Tvergaard-Needleman model of structures in carbon steel A48-AP[J]. Journal of Materials Research and Technology, 2015, 4(2):217-223. [58] SUN G, SUN F, CAO F, et al. Numerical simulation of tension properties for Al-Cu alloy friction stir-welded joints with GTN damage model[J]. Journal of Materials Engineering & Performance, 2015, 24(11):4358-4363. [59] CHHIBBER R, SINGH H, ARORA N, et al. Micromechanical modelling of reactor pressure vessel steel[J]. Materials & Design (1980-2015), 2012, 36:258-274. [60] KINGKLANG S, UTHAISANGSUK V. Plastic deformation and fracture behavior of X65 pipeline steel:Experiments and modeling[J]. Engineering Fracture Mechanics, 2018, 191:82-101. [61] 刘银泉.基于GTN损伤的铝合金管内高压成形的破裂预测[D].哈尔滨:哈尔滨工业大学, 2013. LIU Yinquan. Fracture prediction of aluminum alloy tube hydroforming based on GTN damage model[D]. Harbin:Harbin Institute of Technology, 2013. [62] Zhang Z L, Thaulow C, Ødegård J. A complete Gurson model approach for ductile fracture[J]. Engineering Fracture Mechanics, 2000, 67(2):155-168. [63] STEGLICH D, SIEGMUND T, BROCKS W. Micromechanical modeling of damage due to particle cracking in reinforced metals[J]. Computational Materials Science, 1999, 16(1-4):404-413. [64] FOAD R, GHOLAMHOSSIEN M, FARHAD A, et al. Determination of the constants of GTN damage model using experiment, polynomial regression and kriging methods[J]. Applied Sciences, 2017, 7(11):1179. [65] DONG C, YL A, XUAN Y, et al. Efficient parameters identification of a modified GTN model of ductile fracture using machine learning[J]. Engineering Fracture Mechanics, 2021, 245:107535. [66] JI H, MA Z, Huang X, et al. Damage evolution of 7075 aluminum alloy basing the Gurson Tvergaard Needleman model under high temperature conditions[J]. Journal of Materials Research and Technology, 2022, 16:398-415. [67] JI H, YAO R, HUANG X, et al. Damage evolution of 6005A aluminum alloy sheet based on gurson-tvagaard-needleman model:Experiment and finite element simulation[J]. Journal of Materials Engineering and Performance, 2022, 31(5):3902-3917. [68] YILDIZ R A, YILMAZ S. Experimental investigation of GTN model parameters of 6061 Al alloy[J]. European Journal of Mechanics-A/Solids, 2020, 83:104040. [69] LIU X, WANG C, DENG Q, et al. High-temperature fracture behavior of MnS inclusions based on GTN model[J]. Journal of Iron and Steel Research International, 2019, 26(9):941-952. [70] THORSTEN H, OSOVSKI S, ULLMANN M, et al. GTN model-based material parameters of AZ31 magnesium sheet at various temperatures by means of SEM in-situ testing[J]. Crystals, 2020, 10(10):856. [71] CHEN Z, DONG X. The GTN damage model based on Hill'48 anisotropic yield criterion and its application in sheet metal forming[J]. Computational Materials Science, 2009, 44(3):1013-1021. [72] KAMI A, DARIANI B M, VANINI A S, et al. Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model[J]. Journal of Materials Processing Technology, 2014, 216:472-483. [73] DING F, HONG T, XU Y, et al. Prediction of fracture behavior of 6061 aluminum alloy based on GTN model[J]. Materials, 2022, 15(9):3212. [74] LI H, FU M, LU J, et al. Ductile fracture:Experiments and computations[J]. International Journal of Plasticity, 2011, 27(2):147-180. [75] NGUYEN H H, NGUYEN T N, VU H C. Ductile fracture prediction and forming assessment of AA6061-T6 aluminum alloy sheets[J]. International Journal of Fracture, 2018, 209(1-2):143-162. [76] JIANG W, LI Y, SU J. Modified GTN model for a broad range of stress states and application to ductile fracture[J]. European Journal of Mechanics/A Solids, 2016, 57:132-148. [77] TENG B, WANG W, XU Y. Ductile fracture prediction in aluminium alloy 5A06 sheet forming based on GTN damage model[J]. Engineering Fracture Mechanics, 2017, 186:242-254. [78] SPRINGMANN M, KUNA M. Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques[J]. Computational Materials Science, 2005, 32(3-4):544-552. [79] LI X, CHEN Z, DONG C. Failure and forming quality study of metallic foil blanking with different punch-die clearances[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(9-10):3163-3176. [80] ACHOURI M, GERMAIN G, SANTO P D, et al. Experimental characterization and numerical modeling of micromechanical damage under different stress states[J]. Materials & Design, 2013, 50:207-222. [81] SUN Q, LU Y, CHEN J, et al. Identification of material parameters of a shear modified GTN damage model by small punch test[J]. International Journal of Fracture, 2020, 222:25-35. [82] ALI A N, HUANG S J. Ductile fracture behavior of ECAP deformed AZ61 magnesium alloy based on response surface methodology and finite element simulation[J]. Materials Science and Engineering, 2019, 746:197-210. [83] XU J, SUN T, WEN X, et al. J-R curve determination of G20Mn5QT cast steel using CT specimen with varying in-plane and out-of-plane constraints based on normalization method and GTN model[J]. Journal of Materials Research and Technology, 2022, 18:3502-3519. [84] KIRAN R, KHANDELWAL K. Gurson model parameters for ductile fracture simulation in ASTM A992 steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 2014, 37(2):171-183. [85] SHIKALGAR T D, DUTTA B K, CHATTOPADHYAY J. Analysis of p-SPT specimens using Gurson parameters ascertained by artificial neural network[J]. Engineering Fracture Mechanics, 2020, 240:107324. [86] 赵鹏经.金属板材成形过程中的细观损伤机理研究及其数值模拟[D].北京:北京科技大学, 2018. ZHAO Pengjing. The mesoscopic damage mechanism research and numerical simulation in the process of sheet metal forming[D]. Beijing:University of Science and Technology Beijing, 2018. [87] 刘文权, 盈亮, 王丹彤, 等.热冲压成形过程细观损伤演化机理研究[J].机械工程学报, 2016, 52(14):31-39. LIU Wenquan, YING Liang, WANG Dantong, et al. Investigation of mesoscopic damage evolution mechanism of high strength steel in hot stamping process[J]. Journal of Mechanical Engineering, 2016, 52(14):31-39. [88] 盈亮, 刘文权, 王丹彤, 等. 7075-T6铝合金温成形损伤演化实验与仿真[J].中国有色金属学报, 2016, 26(7):1383-1390. YING Liang, LIU Wenquan, WANG Dantong, et al. Experimental and simulation of damage evolution behavior for 7075-T6 aluminum alloy in warm forming[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(7):1383-1390. [89] GAO T, YING L, HU P, et al. Investigation on mechanical behavior and plastic damage of AA7075 aluminum alloy by thermal small punch test:Experimental trials, numerical analysis[J]. Journal of Manufacturing Processes, 2020, 50:1-16. [90] YING L, GAO T, RONG H, et al. On the thermal forming limit diagram (TFLD) with GTN mesoscopic damage model for AA7075 aluminum alloy:Numerical and experimental investigation[J]. Journal of Alloys and Compounds, 2019, 802:675-693. [91] WANG R, CHEN Z, LI Y, et al. Failure analysis of AZ31 magnesium alloy sheets based on the extended GTN damage model[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(12):1198-1207. [92] WANG L, LI L. Parameter identification of GTN model using response surface methodology for high-strength steel BR1500HS[J]. Journal of Materials Engineering and Performance, 2017, 26(8):3831-3838. [93] TU H, SCHMAUDER S, WEBER U. Numerical study of electron beam welded butt joints with the GTN model[J]. Computational Mechanics, 2012, 50(2):245-255. [94] JIE Y. Micromechanical analysis of in-plane constraint effect on local fracture behavior of cracks in the weakest locations of dissimilar metal welded joint[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9):840-850. [95] WU X, SHUAI J, XU K, et al. Determination of local true stress-strain response of X80 and Q235 girth-welded joints based on digital image correlation and numerical simulation[J]. International Journal of Pressure Vessels and Piping, 2020, 188(3):104232. [96] NIELSEN K. Predicting failure response of spot welded joints using recent extensions to the Gurson model[J]. Computational Materials Science, 2010, 48(1):71-82. [97] QIANG B, WANG X. Ductile crack growth behaviors at different locations of a weld joint for an X80 pipeline steel:A numerical investigation using GTN models[J]. Engineering Fracture Mechanics, 2019, 213:264-279. [98] NÈGRE P, STEGLICH D, BROCKS W, et al. Numerical simulation of crack extension in aluminium welds[J]. Computational Materials Science, 2003, 28(3-4):723-731. [99] 王涛.基于剪切修正GTN模型的高强钢材及T形焊接接头断裂性能研究[D].北京:北京交通大学, 2019. WANG Tao. Study on fracture performance of high strength steel and T-shape welded connections based on shear modified GTN model[J]. Beijing:Beijing Jiaotong University, 2019. [100] LIU P, HU Z, WANG S, et al. Finite element analysis of the void growth and interface failure of ductile adhesive joints[J]. Journal of Failure Analysis and Prevention, 2018, 18(2):291-303. [101] KIM Y S, YANG S H. Effect of plastic anisotropy on the formability of aluminum 6016-T4 sheet material[J]. Chinese Journal of Mechanical Engineering, 2017, 30:625-631. [102] 陈志英, 董湘怀.各向异性GTN损伤模型及其在板料成形中的应用[J].上海交通大学学报, 2008(9):1414-1419. CHEN Zhiying, DONG Xianghuai. The anisotropic GTN damage model and its application in sheet metal forming[J]. Journal of Shanghai Jiao Tong University, 2008(9):1414-1419. [103] HILL R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society of London, 1948, 193(1033):281-297. [104] WU H, ZHUANG X, ZHANG W, et al. Anisotropic ductile fracture:experiments, modeling, and numerical simulations[J]. Journal of Materials Research and Technology, 2022, 20:833-856. [105] WANG Z, HU Z, LIU K, et al. Application of a material model based on the Johnson-Cook and Gurson-Tvergaard-Needleman model in ship collision and grounding simulations[J]. Ocean Engineering, 2020, 205:106768. [106] TONG Y, ZHAO J, QUAN G. Visualization of the damage evolution for Ti-3Al-2Mo-2Zr alloy during a uniaxial tensile process using a microvoids proliferation damage model[J]. High Temperature Materials and Processes, 2021, 40(1):310-324. [107] LI Z, LI R, JI C, et al. Development of a modified gurson-tvergaard-needleman damage model characterizing the strain-rate-dependent behavior of 6061-T5 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2022, 31:7662-7672. [108] LI G, CUI S. Meso-mechanics and damage evolution of AA5182-O aluminum alloy sheet based on the GTN model[J]. Engineering Fracture Mechanics, 2020, 235:107162. |
[1] | WAN Weiqiang, HAN Guangchao, WANG Xinyun, Lü Pei, LIU Fuchu, HU Jitao, BAI Wei, XU Linhong. Research Progress of Ultrasonic Assisted Micro-plastic Forming Process [J]. Journal of Mechanical Engineering, 2024, 60(18): 89-115. |
[2] | LI Hongwei, GAO Jia, SUN Xinxin, ZHANG Xin, ZHENG Zebang, ZHAN Mei. Research Developments on Multiscale Modeling and Simulation towards High-performance Plastic Forming [J]. Journal of Mechanical Engineering, 2024, 60(1): 27-43. |
[3] | TIAN Shaojie, LIU Xuefeng, WANG Wenjing, CUI Qinghe, HAO Jianbo. Research Status of Ultrasonic Vibration System and Its Application Progress in Plastic Forming Field [J]. Journal of Mechanical Engineering, 2023, 59(20): 198-214. |
[4] | WANG Biao, YANG Susong, BAI Chunyu, YANG Qiang, HU Weiping, ZHAN Zhixin. Study on Material Damage Accumulation Model and Its Numerical Implementation under Repeated Impact Loading [J]. Journal of Mechanical Engineering, 2023, 59(2): 138-150. |
[5] | ZHANG Hongrui, ZHAN Mei, ZHENG Zebang, LI Rui. Development and Challenge of Forming Manufacturing Technologies for Aerospace Large-Scale Thin-Wall Axisymmetric Curved-Surface Component [J]. Journal of Mechanical Engineering, 2022, 58(20): 166-185. |
[6] | XU Zhutian, SUN Lei, JIANG Tianhao, PENG Linfa, LAI Xinmin. Fracture Size Effect of Titanium Sheets in Microforming and Its Meso Damage Criterion [J]. Journal of Mechanical Engineering, 2022, 58(16): 51-57. |
[7] | SONG Ming, MA Shuai, JIANG Wenchun, DU Chuansheng, WANG Bingying. Evaluating Mechanical Properties of Brazed Seal Joint of Planar Solid Oxide Fuel Cell by Small Punch Test [J]. Journal of Mechanical Engineering, 2021, 57(10): 178-186. |
[8] | PENG Yan, LI Haoran, LIU Yang, ZHANG Jian. Fatigue Limit Equivalent Relation Based on Uniform Intrinsic Damage Dissipation in Critical Domain [J]. Journal of Mechanical Engineering, 2019, 55(10): 54-61. |
[9] | YING Liang, SHI Dongyong, HU Ping, LIU Wenquan. Numerical Prediction of the Formability during Hot Forming of High Strength Steel Based on Continuum Damage Mechanics [J]. Journal of Mechanical Engineering, 2016, 52(4): 36-44. |
[10] | LIU Jianhui, WANG Shengnan, HUANG Xinchun, FU Yizhan. Multiaxial Fatigue Life Prediction Based on Damage Mechanics and Critical Plane Method [J]. Journal of Mechanical Engineering, 2015, 51(20): 120-127. |
[11] | PENG Yan, LI Haoran. Multiaxial High Cycle Fatigue Damage Evolution Model Including Additional Hardening Effect [J]. Journal of Mechanical Engineering, 2015, 51(16): 135-142. |
[12] | LIU Yusheng, LI Ping, WANG Bin, LI Beibei, XUE Kemin. Numerical Simulation and Technical Study on Superplastic Forming/Diffusion Bonding for Multi-sheet Structure of Ti2AlNb Alloy [J]. Journal of Mechanical Engineering, 2015, 51(12): 43-49. |
[13] | SUN Quan;CHEN Jianjun;LI Xiaoxue;YAN Yuxi;PAN Hongliang. Study on the Application of Shear Modified GTN Model to Small Punch Test [J]. , 2014, 50(24): 79-85. |
[14] | QIN Hongbo; LI Wangyun; LI Xunping; ZHANG Xinping. Research on Low Cycle Fatigue Behavior of BGA Structure Lead-free Solder Joints [J]. , 2014, 50(20): 54-62. |
[15] | HUA Lin;QIAN Dongsheng. Ring Rolling Forming Theory and Technology for Bearing [J]. , 2014, 50(16): 70-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||