SHEN Junxian, MA Tianchi, SONG Di, XU Feiyun. Crack Damage Detection of Centrifugal Fan Blades Based on Interpretable Ensemble Selection Framework[J]. Journal of Mechanical Engineering, 2024, 60(12): 183-193.
[1] GAI J B,SHEN J X,HU Y F,et al. An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing[J]. Measurement,2020,162(10):1-12. [2] 王辉,徐佳文,严如强. 基于多尺度注意力深度强化学习网络的行星齿轮箱智能诊断方法[J]. 机械工程学报,2022,58(11):133-142. WANG Hui,XU Jiawen,YAN Ruqiang. Multi-scale attention based deep reinforcement learning for intelligent fault diagnosis of planetary gearbox[J]. Journal of Mechanical Engineering,2022,58(11):133-142. [3] WANG D,CHEN Y K,SHEN C Q,et al. Fully interpretable neural network for locating resonance frequency bands for machine condition monitoring[J]. Mechanical Systems and Signal Processing,2022,168(11):1-17. [4] DING P,JIA M P. Mechatronics equipment performance degradation assessment using limited and unlabeled data[J]. IEEE Transactions on Industrial Informatics,2021,18(4):2374-2385. [5] LI W,ZHONG X,SHAO H D,et al. Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework[J]. Advanced Engineering Informatics,2022,52(4):1-16. [6] 周登极,郝佳瑞,黄大文. 机器学习模型可解释性研究及其在PHM中应用现状综述[J]. 系统工程,2022,40(6):1-10. ZHOU Dengji,HAO Jiarui,HUANG Dawen. A review on interpretable machine learning and its application on PHM[J]. Systems Engineering,2022,40(6):1-10. [7] GOODFELLOW I,SHLENS J,SZEGEDY C. Explaining and harnessing adversarial examples[C]// 3rd International Conference on Learning Representations,2015,5(1):1-11. [8] SONG D,SHEN J X,MA T C,et al. Two-level fusion of multi-sensor information for compressor blade crack detection based on self-attention mechanism[J]. Structural Health Monitoring,2022,22(3):1911-1926. [9] XIE X P,CHEN W D,CHEN B G,et al. Comprehensive fatigue estimation and fault diagnosis based on refined generalized multi-scale entropy method of centrifugal fan blades[J]. Measurement,2020,166(12):1-17. [10] NING D Y,SUN C L,GONG Y J,et al. Extraction of fault component from abnormal sound in diesel engines using acoustic signals[J]. Mechanical Systems & Signal Processing,2016,75(6):544-555. [11] GLOWACZ A,TADEUSIEWICZ R,LEGUTKO S,et al. Fault diagnosis of angle grinders and electric impact drills using acoustic signals[J]. Applied Acoustics,2021,179(8):1-14. [12] WANG R,LIU F K,HOU F T,et al. A non-contact fault diagnosis method for rolling bearings based on acoustic imaging and convolutional neural networks[J]. IEEE Access,2020,8(1):132761-132774. [13] KAMAL M S,DEY N,CHOWDHURY L,et al. Explainable AI for glaucoma prediction analysis to understand risk factors in treatment planning[J]. IEEE Transactions on Instrumentation and Measurement,2022,71(5):1-12. [14] SAMEK W,MONTAVON G,LAPUSCHKIN S,et al. Explaining deep neural networks and beyond:A review of methods and applications[J]. Proceedings of the IEEE,2021,109(3):247-278. [15] AHMED I,JEON G,PICCIALLI F. From artificial intelligence to explainable artificial intelligence in Industry 4.0:A survey on What,How,and Where[J]. IEEE Transactions on Industrial Informatics,2022,18(8):5031-5042. [16] 王冉,石如玉,胡升涵,等. 基于声成像与卷积神经网络的轴承故障诊断方法及其可解释性研究[J]. 振动与冲击,2022,41(16):224-231. WANG Ran,SHI Ruyu,HU Shenghan,et al. An acoustic fault diagnosis method of rolling bearings based on acoustic imaging and convolutional neural network[J]. Journal of Vibration and Shock,2022,41(16):224-231. [17] HASAN M,SOHAIB M,KIM J. An explainable AI-based fault diagnosis model for bearings[J]. Sensors,2021,21(12):1-34. [18] 宋志坤,徐立成,胡晓依,等. 基于改进型shapelets算法的动车组轴箱轴承故障诊断方法研究[J]. 仪器仪表学报,2021,42(2):66-74. SONG Zhikun,XU Licheng,HU Xiaoyi,et al. Research on fault diagnosis method of axle box bearing of EMU based on improved shapelets algorithm[J]. Chinese Journal of Scientific Instrument,2021,42(2):66-74. [19] WANG Z,ZHAO W,WENHUA D,et al. Data-driven fault diagnosis method based on the conversion of erosion operation signals into images and convolutional neural network[J]. Process Safety and Environmental Protection,2021,149(5):591-601. [20] 王松涛,丁骏,姜斌,等. 三维叶片技术对离心风机流场结构的影响[J]. 机械工程学报,2014,50(4):178-184. WANG Songtao,DING Jun,JIANG Bin,et al. Effect of three-dimensional blade technology on flow behavior in centrifugal fan[J]. Journal of Mechanical Engineering,2014,50(4):178-184. [21] 刘卓,汤健,柴天佑,等. 基于多模态特征子集选择性集成建模的磨机负荷参数预测方法[J]. 自动化学报,2021,47(8):1921-1931. LIU Zhuo,TANG Jian,CHAI Tianyou,et al. Selective ensemble modeling approach for mill load parameter forecasting based on multi-modal feature sub-sets[J]. Acta Automatica Sinica,2021,47(8):1921-1931.