Research on Brake Pitch Comfort Control for Distributed-drive Electric Vehicles Based on Brake-by-wire System
ZHANG Lei1,2, WANG Qi1,2, WANG Zhenpo1,2, DING Xiaolin1,2, SUN Fengchun1,2
1. National Engineering Research Center for Electric Vehicles, Beijing Institute of Technology, Beijing 100081; 2. Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing 100081
ZHANG Lei, WANG Qi, WANG Zhenpo, DING Xiaolin, SUN Fengchun. Research on Brake Pitch Comfort Control for Distributed-drive Electric Vehicles Based on Brake-by-wire System[J]. Journal of Mechanical Engineering, 2024, 60(10): 463-475.
[1] 余卓平,韩伟,徐松云,等. 电子液压制动系统液压力控制发展现状综述[J]. 机械工程学报,2017,53(14):1-15. YU Zhuoping,HAN Wei,XU Songyun,et al. Review on hydraulic pressure control of electro-hydraulic brake system[J]. Journal of Mechanical Engineering,2017,53(14):1-15. [2] MENG B,YANG F,LIU J,et al. A survey of brake-by-wire system for intelligent connected electric vehicles[J]. IEEE Access,2020(8):225424-225436. [3] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 4971-2009汽车平顺性术语和定义[S]. 北京:中国标准出版社,2010. General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Republic of China. GB/T 4971-2009 Terms and definitions for automotive ride comfort[S]. Beijing:Standards Press of China,2010. [4] 毛芳敏. 减轻晕车发病率的汽车主动悬架与制动联合控制研究[D]. 杭州:浙江工业大学,2019. MAO Fangmin. Research on joint control of active suspension and brake for reducing the incidence of carsickness[D]. Hangzhou:Zhejiang University of Technology,2019. [5] 霍舒豪. 基于悬架和线控制动联合控制的制动平顺性研究[D]. 北京:清华大学,2015. HUO Shuhao. Research on braking ride comfort based on integrated control of suspension and brake-by-wire system[D]. Beijing:Tsinghua University,2015. [6] 董德志. 汽车线控制动与半主动悬架制动工况联合控制研究[D]. 吉林:吉林大学,2019. DONG Dezhi. Research on integrated control of brake-by-wire system and semi-active suspension on braking conditions for the vehicle[D]. Jilin:Jilin University,2019. [7] MORITA T,MATSUKAWA T. Improvement of vehicle dynamics by rear braking force control[J]. Vehicle System Dynamics,1995,24(4-5):401-412. [8] 闫瑞雷,庄毅胜,杜锡滔. 稳态制动点头影响因素分析[J]. 汽车工程师,2020(12):45-48. YAN Runlei,ZHUANG Yisheng,DU Xitao. Analysis of influencing factors of steady braking pitch angle[J]. Auto Engineer,2020(12):45-48. [9] 比亚迪汽车官方网站. 汉DM-i参数配置表[EB/OL]. (2023-01-01)[2023-02-22]. https://mall.bydauto.com.cn/pc/carDetail/config?id=67. BYD AUTO Official Website. Specifications Table for BYD HAN Model[EB/OL]. (2023-01-01)[2023-02-22]. https://mall.bydauto.com.cn/pc/carDetail/config?id=67. [10] YI K,CHUNG J. Nonlinear brake control for vehicle CW/CA systems[J]. IEEE/ASME Transactions on Mechatronics,2002,6(1):17-25. [11] 赵伟强,宗长富,郑宏宇,等. 基于制动舒适性的商用车EBS控制策略[J]. 吉林大学学报,2012,42(增刊1):22-26. ZHAO Weiqiang,ZONG Changfu,ZHENG Hongyu,et al. EBS control strategy of commercial vehicle based on braking comfort[J]. Journal of Jilin University,2012,42(Suppl. 1):22-26. [12] ZONG C,YANG S,ZHENG H. A control strategy of electronic braking system based on brake comfort[C]//Proceedings 2011 International Conference on Transportation,Mechanical,and Electrical Engineering (TMEE). Changchun,China:IEEE,2011:1265-1268. [13] 马骏. 纯电动公交客车加速及制动舒适性研究[D]. 西安:长安大学,2017. MA Jun. Study on comfort of acceleration and braking of electric bus[D]. Xi'an:Chang'an University,2017. [14] 刘豪. 电动制动助力器主动建压控制及舒适停车功能开发[D]. 重庆:重庆理工大学,2022. LIU Hao. Active pressure building control of electric brake booster and development of comfort stop function[D]. Chongqing:Chongqing University of Technology,2022. [15] TAVERNINI D,VELENIS E,LONGO S. Model-based active brake force distribution for pitch angle minimization[C]//201554th IEEE Conference on Decision and Control (CDC). Osaka,Japan:IEEE,2015:197-202. [16] TAVERNINI D,VELENIS E,LONGO S. Feedback brake distribution control for minimum pitch[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility,2017,55(5/6):902-923. [17] 王英范,宁国宝,余卓平. 乘用车驾驶员制动意图识别参数的选择[J]. 汽车工程,2011,33(3):213-230. WANG Yingfan,NING Guobao,YU Zhuoping. Parameter selection for the identification of driver's braking intention for passenger car[J]. Automotive Engineering,2011,33(3):213-230. [18] 张元才,余卓平,徐乐,等. 基于制动意图的电动汽车复合制动系统制动力分配策略研究[J]. 汽车工程,2009,31(3):244-249. ZHANG Yuancai,YU Zhuoping,XU Le,et al. A study on the strategy of braking force distribution for the hybrid braking system in electric vehicles based on braking intention[J]. Automotive Engineering,2009,31(3):244-249. [19] 许世维,马建,汪贵平,等. 基于制动意图识别的增程式重型商用车复合制动控制策略[J]. 中国公路学报,2017,30(4):140-151. XU Shiwei,MA Jian,WANG Guiping,et al. Composite braking control strategy based on braking intention recognition for range-extended heavy commercial vehicles[J]. China Journal of Highway and Transport,2017,30(4):140-151. [20] 张雷,刘青松,王震坡. 四轮轮毂电机驱动电动汽车电液复合制动平顺性控制策略[J]. 机械工程学报,2020,56(24):125-134. ZHANG Lei,LIU Qingsong,WANG Zhenpo. Electro-hydraulic brake control for improved ride comfort in four-wheel-independently-actuated electric vehicles[J]. Journal of Mechanical Engineering,2020,56(24):125-134.