[1] 黄强,郭怿,江建华,等."双碳"目标下中国清洁电力发展路径[J]. 上海交通大学学报,2021,55(12):1499-1509. HUANG Qiang,GUO Yi,JIANG Jianhua,et al. Development pathway of China's clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University,2021,55(12):1499-1509. [2] 朱建勇,刘沛清. 180°螺旋式Savonius风力机气动特性试验研究[J]. 机械工程学报,2020,56(8):155-161. ZHU Jianyong,LIU Peiqing. Experimental study on aerodynamic characteristics of helical savonius rotor with twist of 180°[J]. Journal of Mechanical Engineering,2020,56(8):155-161. [3] EL-SHAHAT A. Bladeless wind turbine as wind energy possible future technology[J]. Natural Gas & Electricity,2016,33(4):16-20. [4] INAGAKI T,LI Y,NISHI Y. Analysis of aerodynamic sound noise generated by a large-scaled wind turbine and its physiological evaluation[J]. International Journal of Environmental Science and Technology,2015,12(6):1933-1944. [5] WANG Junlei,GENG Linfeng,DING Lin,et al. The state-of-the-art review on energy harvesting from flow-induced vibrations[J]. Applied Energy,2020,267:114902. [6] WILLIAMSON C H K,GOVARDHAN R. Vortex induced vibration[J]. Annual Review of Fluid Mechanics,2004,36:413-455. [7] BEEBY S P,TUDOR M J,WHITE N M. Energy harvesting vibration sources for microsystems applications[J]. Measurement Science and Technology,2006,17(12):175-195. [8] SUN W,JUNG J,SEOK J. Frequency-tunable electromagnetic energy harvester using magneto-rheological elastomer[J]. Journal of Intelligent Material Systems and Structures,2016,27(7):959-979. [9] LIU H,QIAN Y,LEE C. A multi-frequency vibration-based MEMS electromagnetic energy harvesting device[J]. Sensors & Actuators a Physical,2013,204:37-43. [10] NGUYEN M S,YOON Y J,KIM P. Enhanced broadband performance of magnetically coupled 2-DOF bistable energy harvester with secondary intrawell resonances[J]. International Journal Precision Engineering Manufacturing-Green Technology,2019,6(3):521-530. [11] WAN S,JUNG J,XIAO Y W,et al. Design,simulation,and optimization of a frequency-tunable vibration energy harvester that uses a magnetorheological elastomer[J]. Advances in Mechanical Engineering,2015,7(1):147421-147421. [12] TOPALOGLU N, KARADAG C V. A self-sufficient and frequency tunable piezoelectric vibration energy harvester[J]. Journal of vibration and acoustics:Transactions of the ASME,2017,139(1):011013. [13] QIN W,DENG W,PAN J,et al. Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping[J]. Energy,2019,189(15):116237. [14] ZHANG L B,ABDELKEFI A,DAI H L,et al. Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations[J]. Journal of Sound & Vibration,2017,408:210-219. [15] 龚曙光,吴兴豪,卢海山,等. 无叶片风力机捕能柱涡激摆动特性及捕能效率[J]. 太阳能学报,2022,43(1):21-28. GONG Shuguang,WU XingHao. LU Haishan,et al. Vortex-induced swing characteristics and capturing energy efficiency of capturing energy column of bladeless wind turbine[J]. Acta Energiae Solaris Sinica,2022,43(1):21-28. [16] YÁÑEZ D J. VIV resonant wind generators[EB/OL].[2018-01-06]. http://www.vortexbladeless.com. [17] KHAN N B,IBRAHIM Z. Numerical investigation of vortex-induced vibration of an elastically mounted circular cylinder with one-degree of freedom at high Reynolds number using different turbulent models[J]. Proceedings of the Institution of Mechanical Engineers,Part M:Journal of Engineering for the Maritime Environment,2019,233(2):443-453. [18] BEHR M,HASTREITER D,MITTAL S,et al. Incompressible flow past a circular cylinder:dependence of the computed flow field on the location of the lateral boundaries[J]. Computer Methods in Applied Mechanics & Engineering,1995,123(1-4):309-316. [19] GOVARDHAN R N,WILLIAMSON C H K. Defining the 'modified Griffin plot' in vortex-induced vibration:Revealing the effect of Reynolds number using controlled damping[J]. Journal of Fluid Mechanics,2006,561:147-178. [20] SCHEWE G. On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers[J]. Journal of Fluid Mechanics,1983,133:265-285. [21] RAHMAN M A A,LEGGOE J,THIAGARAJAN K,et al. Numerical simulations of vortex-induced vibrations on vertical cylindrical structure with different aspect ratios[J]. Ships and Offshore Structures,2016,11(3-4):405-423. [22] WORNOM S,OUVRARD H,SALVETTI M V,et al. Variational multiscale large-eddy simulations of the flow past a circular:Reynolds number effects[J]. Computers & Fluids,2011,47(1):44-50. [23] 康庄,张橙. 雷诺数对圆柱体涡激振动特性影响研究[J]. 华中科技大学学报,2017,45(11):74-79. KANG Zhuang,ZHANG Cheng. Impact of Reynolds number on vortex-induced vibration performance of cylinder[J]. Journal of Huazhong University of Science and Technology,2017,45(11):74-79. [24] LEE J H,BERNITSAS M M. High-damping,high-Reynolds VIV tests for energy harnessing using the VIVACE converter[J]. Ocean Engineering,2011,38(16):1697-1712. |