Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (21): 38-49.doi: 10.3901/JME.2022.21.038
Previous Articles Next Articles
LEI Jingtao1,2, ZHANG Yuewen1
Received:
2021-11-03
Revised:
2022-02-22
Online:
2022-11-05
Published:
2022-12-23
CLC Number:
LEI Jingtao, ZHANG Yuewen. Analysis on the Characteristics with Biological Variable Stiffness of the Bionic-body Driven by Pneumatic Muscle Fibers[J]. Journal of Mechanical Engineering, 2022, 58(21): 38-49.
[1] 王吉岱, 卢坤媛, 徐淑芬, 等. 四足步行机器人研究现状及展望[J]. 制造业自动化, 2009, 31(2):4-6. WANG Jidai, LU Kunyuan, XU Shufen, et al. Research situation and prospect on quadruped walking robot[J]. Manufacturing Automation, 2009, 31(2):4-6. [2] LEESER K F. Locomotion experiments on a planar quadruped robot with articulated spinee[D]. Cambridge:MassachusetsInstitute of Technology, 1996. [3] KAWASAKI R, SATO R, KAZAMA E, et al. Development of a flexible coupled spine mechanism for a small quadruped robot[C]//IEEE International Conference on Robotics and Biomimetics. Qingdao, China. 2016:71-76. [4] 董立涛. 含脊柱关节四足机器人仿生结构设计及跳跃运动仿真研究[D]. 哈尔滨:哈尔滨工程大学, 2014. DONG Litao. Bionic structural design and bounding motion simulation of quadruped robot with a spinal joint[D]. Harbin:Harbin Engineering University, 2014. [5] 李冬冬. 柔顺四足机器人的设计与控制研究[D]. 北京:北京交通大学, 2012. LI Dongdong. Study on design and control of a compliant quadruped robot[D]. Beijing:Beijing Jiaotong University, 2012. [6] KUEHN D, BERNHARD F, GRIMMINNER F, et al. Development of passive spine and actuated rear foot for an ape-like robot[C]//International Conference on Climbing and Walking Robots and the Support technologies for Mobile Machines. London:Springer Press, 2010:237-244. [7] SEOK S, WANG A, MENG Y C, et al. Design principles for highly efficient quadrupeds and implementation on the MIT cheetah robot[C]//IEEE International Conference on Robotics and Automation. Karlsruhe, Germany. 2013:3307-3312. [8] 张秀丽, 梁艳. 一种仿婴儿欠自由度四足爬行机器人[J]. 机器人, 2016, 38(4):458-466. ZHANG Xiuli, LIANG Yan. A baby-mimic insufficient-DOF quadruped crawling robot[J]. Robot, 2016, 38(4):458-466. [9] LEI Jingtao, YU Huangying, WANG Tianmiao. Dynamic bending of bionic flexible body driven by PAMs for spinning gait of quadruped robot[J]. Chinese Journal of Mechanical Engineering, 2016, 29(1):11-20. [10] KIM Y J, CHENG S, KIM S, et al. A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery[J]. IEEE Transactions on Robotics, 2014, 30(2):382-395. [11] CHU Z, ZHANG D, LIAN X, et al. Multi-objective optimization of stiffness and workspace for a parallel kinematic machine[J]. International Journal of Mechanics & Materials in Design, 2013, 9(3):281-293. [12] HOGAN N. Adaptive control of mechanical impedance by coactivation of antagonist muscles[J]. IEEE Transactions on Automatic Control, 1984, 29(8):681-690. [13] WOLF S, HIRZINGER G. A new variable stiffness design:Matching requirements of the next robot generation[C]//IEEE International Conference on Robotics and Automation. Pasadena, CA, USA. 2008:1741-1746. [14] TSAGARAKIS N G, SARDELLITTI I, CALDWELL D G. A newvariable stifiness actuator (Compacta-VSA) design and modelling[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, USA. 2011, 378-383. [15] TAO Y, WANG T, WANG Y, et al. Design and modeling of a new variable stiffness robot joint[C]//IEEE International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), 2014, 1-5. [16] 闫继宏, 石培沛, 张新彬, 等. 软体机械臂仿生机理、驱动及建模控制研究发展综述[J]. 机械工程学报, 2018, 54(15):1-14. YAN Jihong, SHI Peipei, ZHANG Xinbin, et al. Review of biomimetic mechanism, actuation, modeling and control in soft manipulators[J]. Journal of Mechanical Engineering, 2018, 54(15):1-14. [17] MCMAHAN W, CHITRAKARAN V, CSENCSITS M, et al. Field trials and testing of the OctArm continuum manipulator[C]//IEEE International Conference on Robotics and Automation, Orlando, Florida. 2006:2336-2341. [18] MD G, CHITRAKARAN V, DIENNO D, et al. Design and experimental testing of the OctArm soft robot manipulator[C]//Conference on Unmanned Systems Technology VIII. Kissimmee, FL:Unmanned Systems Technology VIII, 2006:1-10. [19] NEPPALLI S, JONES B, MCMAHAN W, et al. OctArm -A soft robotic manipulator[C]//IEEE International Conference on Intelligent Robots and Systems, 2007:2569. [20] MAHL T, HILDEBRANDT A, SAWODNY O. A variable curvature continuum kinematics for kinematic control of the bionic handling assistant[J]. IEEE Transactions on Robotics, 2014, 30(4):935-949. [21] CIANCHETTI M, CALISTI M, MAERGHERI L, et al. Bioinspired locomotion and grasping in water:The soft eight-arm OCTOPUS robot[J]. Bioinspiration & Biomimetics, 2015, 10:035003. [22] MAZZOLAI B, MARGHERI L, CIANCHETTI M, et al.Soft-robotic arm inspired by the octopus:II. From artificial requirements to innovative technological solutions[J]. Bioinspiration & Biomimetics, 2012, 7:025005. [23] 贾楠, 李鹏飞, 沈亚欣, 等. 侧弯动物模型的脊柱韧带结构及研究进展[J]. 实验动物科学, 2017, 34(6):69-73, 78. JIA Nan, LI Pengfei, SHEN Yaxin, et al. The research of spinal ligament in scoliosis animal model[J]. Laboratory Animal Science, 2017, 34(6):69-73, 78. [24] POLAK K, MARCIN, KRZYSZTOF, et al. Biomechanical characteristics of the porcine denticulate ligament in different vertebral levels of the cervical spine-Preliminary results of an experimental study[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34:165-170. [25] KAMAL Z, ROUHI G. Significance of spine stability criteria on trunk muscle forces following unilateral muscle weakening:A comparison between kinematics-driven and stability-based kinematics-driven musculoskeletal models[J]. Medical Engineering & Physics, 2019, 73:51-63. [26] 韦以宗, 谢冰, 谭树生, 等. 腰大肌作用力与脊柱伸展应力关系的生物力学实验研究[J]. 中国临床解剖学杂志, 2008, 26(5):543-546. WEI Yizong, XIE Bing, TAN Shusheng, et al. The tension effects of psoas muscle on the extended stress of the spine:Biomechanical research[J]. Chinese Journal of Clinical Anatomy, 2008, 26(5):543-546. [27] ZWAMBAG D P, BROWN S. Experimental validation of a novel spine model demonstrates the large contribution of passive muscle to the flexion relaxation phenomenon[J]. Journal of Biomechanics, 2019, 102:109431. [28] 魏晓宁, 王艳, 裴飞. 腰椎间盘结构、盘内压力及不同载荷的影响:生物力学研究进展[J]. 中国组织工程研究, 2015, 19(20):3242-3247. WEI Xiaoning, WAN Yan, PEI Fei. A biomechanical progress of lumbar intervertebral disk in terms of structural features, internal pressure and different loads[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(20):3242-3247. [29] WEINMEISTER K, ECKERT P, WITTE H, et al. Cheetah-cub-S:Steering of a quadruped robot using trunk motion[C]//IEEE International Symposium on Safety, Security, and Rescue Robotics. West Lafayette, IA. 2015:1-6. [30] LEI J, YU H. Study on the musculoskeletal body for quadruped robots with spinning gait[J]. High Technology Letters, 2015, 21(3):245-252. [31] CHALHOUB M S, KELLY J M. Effect of bulk compressibility on the stiffness of cylindrical base isolation bearings[J]. International Journal of Solids and Structures, 1990, 26(7):743-760. [32] 张秀丽, 谭小康, 吴海波. 可变刚度的四足机器人被动柔顺脊柱设计与应用[J]. 北京交通大学学报, 2018, 42(6):111-118. ZHANG Xiu, TAN Xiaokang, WU Haibo. Design and application of passive compliant spine of quadruped robot with variable stiffness[J]. Journal of Beijing jiaotong university, 2018, 42(6):111-118 [33] 雷静桃, 张悦文, 戴臻豪, 等. 仿生气动肌纤维静态特性建模与实验研究[J]. 上海交通大学学报, 2021, 55(5):566-574. LEI Jingtao, ZHANG Yuewen, DAI Zhenhao, et al. Modeling and experimental study on static characteristics of bionic pneumatic muscle fiber[J]. Journal of Shanghai Jiaotong University, 2021, 55(5):566-574. |
[1] | FANG Xudong, DENG Wubin, WU Zutang, LI Jin, WU Chen, MAEDA Ryutaro, TIAN Bian, ZHAO Libo, LIN Qijing, ZHANG Zhongkai, HAN Xiangguang, JIANG Zhuangde. Respiration Measurement Technology Based on Inertial Sensors:A Review [J]. Journal of Mechanical Engineering, 2024, 60(20): 1-23. |
[2] | FU Yang, ZHANG Yue, MAO Ying, TANG Xiaohua, CHEN Zugao, XU Hewu, YANG Yupei, GAO Bin, TIAN Guiyun. Feature Boosting Framework for Pipeline Multi-sensing Defects Inspection Using an Intelligent Pig System [J]. Journal of Mechanical Engineering, 2024, 60(20): 51-67. |
[3] | WU Jie, SHEN Yifu, HUANG Guoqiang. Investigation into the Microstructure and Properties of 2024Al TIG Joint with Wire Filler Subjected to Friction Stir Processing [J]. Journal of Mechanical Engineering, 2024, 60(20): 153-161. |
[4] | ZHANG Zhiyong, WANG Yuxiang, HUANG Caixia, WU You, DU Ronghua. Vehicle Lateral Collision Warning Based on Grey Prediction and Kalman Filter [J]. Journal of Mechanical Engineering, 2024, 60(20): 240-250. |
[5] | LIAO Guiwen, ZHANG Yi, WEI Kai, LIU Xiaojun, WANG Wei. Coupling Characteristics of Liquid-solid Two-phase Flow Field Structure and Particle Motion Behavior at Restricted Lubrication Interface [J]. Journal of Mechanical Engineering, 2024, 60(20): 351-360. |
[6] | WANG Xu, JIANG Xingyu, YANG Guozhe, SUN Meng, YU Shenhong, BI Kaihang, ZHAO Rizheng, LIU Weijun. Research on Optimization of Human-Machine Interface Layout of Laser Cleaning Equipment Based on PSO-SSA [J]. Journal of Mechanical Engineering, 2024, 60(20): 372-387. |
[7] | WANG Dexiang, ZHANG Yu, JIANG Jingliang, LIU Xinfu, LIU Guoliang. Tribological Mechanism on the Grinding Interface of Nickel-base Superalloy under Minimum Quantity Lubrication with Ionic Liquid and Palm Oil Based Nanofluids [J]. Journal of Mechanical Engineering, 2024, 60(19): 159-171. |
[8] | LI Pu, LU Daixing. A Review of Co-simulation Algorithm [J]. Journal of Mechanical Engineering, 2024, 60(19): 172-186. |
[9] | WANG Xiaoyu, WEI Zhaocheng, WANG Xueqin, WANG Dong. Geometric Modeling of Residual Materials in Impeller Milling with Double Row Slotting [J]. Journal of Mechanical Engineering, 2024, 60(19): 310-317. |
[10] | WANG Gaojian, LIU Li, KANG Dandan, YE Yanhong, DENG Dean. Effect of Ni Content on Microstructure, Mechanical Properties and Corrosion Behavior of Weathering Steel Weld Metal for High-speed Train Bogies [J]. Journal of Mechanical Engineering, 2024, 60(18): 163-172. |
[11] | ZHANG Mingkang, SHI Wenqing, XU Meizhen, WANG Di, CHEN Jie. Compression and Fluid Pressure Drop Properties of Implicit Surface Cellular Structures [J]. Journal of Mechanical Engineering, 2024, 60(18): 394-406. |
[12] | MA Weijia, ZHU Xiaolong, LIU Qingyao, DUAN Xingguang, LI Changsheng. Artificial Intelligence in Robot-assisted Surgery [J]. Journal of Mechanical Engineering, 2024, 60(17): 22-39. |
[13] | YUAN Xiaoqing, WU Tao, YUAN Xun, WANG Wendong. Research on a Full-body Power-assisted Exoskeleton Control Method Based on GSO-RF Intent Recognition Algorithm [J]. Journal of Mechanical Engineering, 2024, 60(17): 91-101. |
[14] | ZHANG Yuze, ZHAO Jingfu, ZHAO Zhenwei, KANG Rongjie, DAI Jiansheng, SONG Zhibin. Design and Analysis of a Parallel Cable Driven Lower Limb Rehabilitation Robot for Multi Joints Training [J]. Journal of Mechanical Engineering, 2024, 60(17): 111-122. |
[15] | LIANG Xu, ZHANG Jianyong, LI Guotao, SU Tingting, HE Guangping, HOU Zengguang. Redundant Parallel Mechanism for Fracture Reduction Surgery: Design, Modeling and Performance Analysis [J]. Journal of Mechanical Engineering, 2024, 60(17): 133-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||