[1] MUNTEAN C M, DIAN N E, COROS, M, et al. Graphene/silver nanoparticles-based surface-enhanced Raman spectroscopy detection platforms:Application in the study of DNA molecules at low pH[J]. Journal of Raman Spectroscopy, 2019, 50(12):1849-1860. [2] ARABI M, OSTOVAN A, ZHANG Zhiyang, et al. Label-free SERS detection of Raman-inactive protein biomarkers by Raman reporter indicator:Toward ultrasensitivity and universality[J]. Biosensors and Bioelectronics, 2021, 174:112825. [3] ALYAMI A, QUINN A J, LACOPINO D L. Flexible and transparent surface enhanced Raman scattering (SERS)-active Ag NPs/PDMS composites for in-situ detection of food contaminants[J]. Talanta, 2019, 201:5-64. [4] SARFO D, LZAKE E L, AYOKO G A, et al. Fabrication of nanostructured SERS substrates on conductive solid platforms for environmental application[J]. Critical Reviews in Environmental Science & Technology, 2019, 49(14):1-36. [5] HE Ruihui, LAI Haojie, WANG Siyuan, et al. Few-layered vdW MoO3for sensitive, uniform and stable SERS applications[J]. Applied Surface Science, 2020, 507:145116. [6] SUN Wenfeng, WEI Wenzuo, LIU Qingyou, et al. Ag-Ag2O composite structure with tunable localized surface plasmon resonance as ultrastable, sensitive and cost-effective SERS substrate[J]. Journal of Alloys and Compounds, 2020, 839:155729. [7] GAUR R, MANIKANDAN P, MANIKANDAN D, et al. Noble metal ion embedded nanocomposite glass materials for optical functionality of UV-visible surface plasmon resonance (SPR) surface-enhanced raman scattering (SERS) X-ray and electron microscopic studies:An overview[J]. Plasmonics, 2021, 16(5):1461-1493. [8] XU Jihua, SI Yuan, LI Zhen, et al. Multiscale structure enabled effective plasmon coupling and molecular enriching for SERS detection[J]. Applied Surface Science, 2021, 544:148908. [9] EROL M, HAN Yun, STANLEY S K, et al. SERS not to be taken for granted in the presence of oxygen.[J]. Journal of the American Chemical Society, 2009, 131(22):7480-7481. [10] LI Xueying, LI Jing, ZHOU Xuemei, et al. Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy[J]. Carbon, 2014, 66:713-719. [11] HUANG Fei, JIA Zhimin, DIAO Jiangyong, et al. Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene[J]. Journal of Energy Chemistry, 2019, 33:31-36. [12] WEI Wenxian, WANG Lili, HUANG Qingli, et al. Controlled synthesis of biocompatible rGO@CD@Au nanocomposites for trace detection for doxorubicin by Raman imaging spectroscopy[J]. Journal of Alloys and Compounds, 2019, 783:37-43. [13] TIAN Huihui, ZHANG Na, TONG Lianming, et al. In situ quantitative graphene-based surface-enhanced raman spectroscopy[J]. Small Methods, 2017, 1(6):1700126. [14] ZHU Chuhong, HU Xiaoye, WANG Xiujuan. Silver nanocubes/graphene oxide hybrid film on a hydrophobic surface for effective molecule concentration and sensitive SERS detection[J]. Applied Surface Science, 2019, 470:423-429. [15] SU Kailimai, ZHANG Ya, CHEN Shaonan, et al. Selectively encapsulating Ag nanoparticles on the surface of two-dimensional graphene for surface-enhanced Raman scattering[J]. Applied Surface Science, 2019, 492:108-115. [16] HAN Yu, WU Sirong, TIAN Xiangdong, et al. Optimizing the SERS performance of 3D substrates through tunable 3D plasmonic coupling toward label-free liver cancer cell classification[J]. ACS Applied Materials And Interfaces, 2020, 12(26):28965-28974. [17] IBANEZ D, BEGONA M, HERNANDEZ D, et al. Detection of dithiocarbamate, chloronicotinyl and organophosphate pesticides by electrochemical activation of SERS features of screen-printed electrodes[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 248:119174. [18] MONDAL P, GUO Chengchen, YARGER JL. Water soluble gold-polyaniline nanocomposite:A substrate for surface enhanced Raman scattering and catalyst for dye degradation[J]. Arabian Journal of Chemistry, 2019, 13(2):4009-4018. [19] WANG Rong, ZHANG Liping, ZOU Shiying, et al. Electrodeposition of Ag nanodendrites SERS substrates for detection of malachite green[J]. Microchemical Journal, 2019, 150:104127. [20] ZHAO Yuan, LI Xiyu, WANG Meishan, et al. Constructing sub-10-nm gaps in graphene-metal hybrid system for advanced surface-enhanced Raman scattering detection[J]. Journal of Alloys and Compounds, 2017, 720:139-146. [21] ZHAO Yuan, ZHAO Shasha, ZHANG Lichun, et al. A three-dimensional Au nanoparticle-monolayer grapheme-Ag hexagon nanoarray structure for high-performance surface-enhanced Raman scattering[J]. RSC Advances, 2017, 7(20):11904-11912. [22] ZHAO Yuan, CHU Binhua, ZHANG Lichun, et al. Constructing sensitive SERS substrate with a sandwich structure separated by single layer graphene[J]. Sensors And Actuators B-chemical, 2018, 263:634-642. [23] WANG Xiangxian, ZHU Jiankai, WU Yuan, et al. Hybrid surface plasmon effect and SERS characterization in a heterogeneous composite structure of Au nano-array and Ag film[J]. Results in Physics, 2020, 17:103175. [24] WANG Hong, HUO Zihang, ZHANG Zihao, et al. Optimization of Ag coated hydrogen silsesquioxane square array hybrid structure design for surface-enhanced Raman scattering substrate[J]. Optics Express, 2018, 26(2):1097-1107. [25] CHANG Yuchung, HUANG Bohan, LIN Tsung-hsien, et al. Surface-enhanced raman scattering and fluorescence on gold nanogratings[J]. Nanomaterials, 2020, 10(4):776. [26] YUE Weisheng, GONG Tiancheng, LONG Xiyu, et al. Sensitive and reproducible surface-enhanced raman spectroscopy (SERS) with arrays of dimer-nanopillars[J]. Sensors and Actuators B:Chemical, 2020, 322:128563. [27] ZHAI Yingjiao, YANG Hui, ZHANG Sinan, et al. Controllable preparation of the Au-MoS2 nano-array composite:Optical properties study and SERS application[J]. Journal of Materials Chemistry C, 2021, 9(21):6823-6833. [28] ZHANG Jie, YIN Zenghe, GONG Tiancheng, et al. Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering[J]. Optics Express, 2018, 26(17):22432-22439. [29] 孔祥霞, 孙凤莲, 杨淼森, 等. Bi和Ni元素对Cu/SAC/Cu微焊点体钎料蠕变性能的影响[J]. 机械工程学报, 2017, 53(2):53-60. KONG Xiangxia, SUN Fenglian, YANG Miaosen, et al. Effect of Bi and Ni concentration on the creep behavior of the bulks of Cu/SAC/Cu micro solder joints[J]. Journal of Mechanical Engineering, 2017, 53(2):53-60. [30] 郭素娟, 史艳茹, 贾云飞, 等. 双相不锈钢各组相循环变形行为的纳米压痕试验和有限元表征方法研究[J]. 机械工程学报, 2020, 56(22):90-100. GUO Sujuan, SHI Yanru, JIA Yunfei, et al. Nanoindentation experiment and finite element characterization of the cyclic deformation behavior of duplex stainless steel[J]. Journal of Mechanical Engineering, 2020, 56(22):90-100. [31] 黄虎, 赵宏伟, 史成利, 等. 压电驱动型微纳米压痕测试装置的设计与试验研究[J]. 机械工程学报, 2013, 49(12):1-7. HUANG Hu, ZHAO Hongwei, SHI Chengli, et al. Design and experimental investigation of PZT-driving type micro/nanoindentation device[J]. Journal of Mechanical Engineering, 2013, 49(12):1-7. [32] GONG Jinlong, LIPOMI DJ, DENG Jiangdong, et al. Micro-and nanopatterning of inorganic and polymeric substrates by indentation lithography[J]. Nano Letters, 2010, 10(7):2702-2708. [33] CHANG Chiawei, LIAO Jiunnder, SHIAU Aili, et al. Non-labeled virus detection using inverted triangular Au nano-cavities arrayed as SERS-active substrate[J]. Sensors and Actuators B:Chemical, 2011, 156(1):471-478. [34] YAO Chihkai, LIAO Jiunnder, CHANG Chiawei, et al. Spatially reinforced nano-cavity array as the SERS-active substrate for detecting hepatitis virus core antigen at low concentrations[J]. Sensors & Actuators B Chemical, 2012, 174:478-484. [35] ZHANG Jingran, YAN Yongda, MIAO Peng, et al. Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates[J]. Beilstein Journal of Nanotechnology, 2017, 8:2271-2282. [36] ZHANG Jingran, JIA Tianqi, YAN Yongda, et al. Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods[J]. Beilstein Journal of Nanotechnology, 2019, 10:2483-2496. [37] ZHANG Jingran, Yan Yongda, Hu Zhenjiang, et al. Study of the control process and fabrication of microstructures using a tip-based force control system[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2018, 11(232):1928-1942. [38] PENG Zhiwei, YAN Zheng, SUN Zhengzong, et al. Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel[J]. ACS Nano, 2011, 5(10):8241-8247. [39] LING Xi, WU Junxia, XIE Liming, et al. Graphene-thickness-dependent graphene-enhanced raman scattering[J]. Journal of Physical Chemistry C, 2013, 117(5):2369-2376. [40] ZHANG Wei, GU Panpan, WANG Zengyao, et al. Integrated "Hot Spots":Tunable sub-10 nm crescent nanogap arrays[J]. Advanced Optical Materials, 2019, 7(24):1901337. [41] LIN Yingyi, LIAO Jiunnder, JU Yuhung, et al. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus[J]. Nanotechnology, 2011, 22(18):185308-158316. [42] CHANG Chiachi, IMAE T, CHEN Liangyih, et al. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers[J]. Physical Chemistry Chemical Physics, 2015, 17(48):32328-32334. [43] BYRAMC B, BHARAT MSS, ALBRYCHT P, et al. Fabrication of nanocages on nickel using femtosecond laser ablation and trace level detection of malachite green and Nile blue dyes using surface enhanced Raman spectroscopic technique[J]. Optics & Laser Technology, 2020, 131:106454. [44] LUO Xiaojun, XING Yingfang, GALVAN DD, et al. A Plasmonic gold nanohole array for surface-enhanced raman scattering detection of DNA methylation[J]. ACS Sensors, 2019, 4(6):1534-1542. [45] ROLDAN ML, CORRADO G, FRANCIOSO O, et al. Interaction of soil humic acids with herbicide paraquat analyzed by surface-enhanced Raman scattering and fluorescence spectroscopy on silver plasmonic nanoparticles[J]. Analytica Chimica Acta, 2011, 699(1):87-95. [46] ZHANG Zhiliang, SI Tiantian, ZHOU Guowei. In-Situ Grown silver nanoparticles on nonwoven fabrics based on mussel-inspired polydopamine for highly sensitive SERS carbaryl pesticides detection[J]. Nanomaterials, 2019, 9(3):384. |