Modelling and Analysis of Complex System Dynamics Based on Orthogonal Matching Pursuit Algorithm
LUO Zhong1,2,3, ZHOU Guangze1,2, ZHU Yunpeng4, GAO Yi1,2, LI Lei1,2
1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819; 2. Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819; 3. Foshan Graduate School of Innovation, Northeastern University, Foshan 528312; 4. Department of Automatic Control and System Engineering, University of Sheffield, Sheffield UK S13JD
LUO Zhong, ZHOU Guangze, ZHU Yunpeng, GAO Yi, LI Lei. Modelling and Analysis of Complex System Dynamics Based on Orthogonal Matching Pursuit Algorithm[J]. Journal of Mechanical Engineering, 2022, 58(19): 86-94.
[1] LIU Haopeng,ZHU Yunpeng,LUO Zhong,et al. Identification of the dynamic parametrical model with an iterative orthogonal forward regression algorithm[J]. Applied Mathematical Modelling. 2018,64:643-653. [2] BREWICK P T,MASRI S F. An evaluation of data-driven identification strategies for complex nonlinear dynamic systems[J]. Nonlinear Dynamics,2016,85(2):1297-1318. [3] TAO Fei,QI Qinglin. Make more digital twins[J]. Nature,2019,573(7775):490-491. [4] LUE Linyuan,ZHOU Tao. Link prediction in complex networks:A survey[J]. Physica A:Statistical Mechanics and its Applications,2011,390(6):1150-1170. [5] LI Yuqi ,LUO Zhong,HE Fengxia,et al. Modeling of rotating machinery:A novel frequency sweep system identification approach[J]. Journal of Sound and Vibration,2021,494. 115882 [6] BILLINGS S,CHEN S,KORENBERG M. Identification of MIMO non-linear systems using a forward-regression orthogonal estimator[J]. International Journal of Control,1989,49(6):2157-2189. [7] LI Yuqi ,LUO Zhong,LIU Zijia,et al. Nonlinear dynamic behaviors of a bolted joint rotor system supported by ball bearings[J]. Archive of Applied Mechanics,2019,89(11):2381-2395. [8] AKINOLA T E,OKO E,GU Y,et al. Non-linear system identification of solvent-based post-combustion CO2capture process[J]. Fuel,2019,239:1213-1223. [9] CHEN Shen,XIA Hong,HARRIS C J,et al. Sparse mzodeling using orthogonal forward regression with PRESS statistic and regularization[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2004,34(2):898-911. [10] BONIN M,SEGHEZZA V,PIRODDI L. NARX model selection based on simulation error minimisation and LASSO[J]. IET Control Theory and Applications,2010,4(7):1157-1168. [11] EFRON B,HASTIE T,JOHNSTONE I,et al. Least angle regression[J]. Annals of Statistics,2004,32(2):407-451. [12] JACOBS W R,BALDACCHINO T,DODD T,et al. Sparse bayesian nonlinear system identification using variational inference[J]. IEEE Transactions on Automatic Control,2018,63(12):4172-4187. [13] CHEN Shen,WIGGER J. Fast orthogonal least squares algorithm for efficient subset model selection[J]. IEEE Transactions on Signal Processing,1995,43(7):1713-1715. [14] KARAMI K,WESTWICK D,SCHOUKENS J. Applying polynomial decoupling methods to the polynomial NARX model[J]. Mechanical Systems and Signal Processing,2021,148. [15] LIU Yi,WANG Haiqing,YU Jiang,et al. Selective recursive kernel learning for online identification of nonlinear systems with NARX form[J]. Journal of Process Control,2010,20(1):181-194. [16] ALTAN A,ASLAN O,HACIOGLU R. Real-time control based on NARX neural network of hexarotor UAV with load transporting system for path tracking[C]. Istanbul,Turkey:2018. [17] RAI S,DE M L. NARX:Contribution-factor-based short-term multinodal load forecasting for smart grid[J]. International Transactions on Electrical Energy Systems,2021,31(9). [18] PATI Y C,REZAIIFAR R,KRISHNAPRASAD P S. Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decomposition[C]. 1993. [19] YANG Ming,LIU Ningbo,LIU Wei. Image 1D OMP sparse decomposition with modified fruit-fly optimization algorithm[J]. Cluster Computing-The Journal of Networks Software Tools and Applications,2017,20(4):3015-3022. [20] SHEN Yi,LI Song. Sparse signals recovery from noisy measurements by orthogonal matching pursuit[J]. Inverse Problems and Imaging,2015,9(1):231-238. [21] KAUR A,BUDHIRAJA S. Wavelet based sparse image recovery via orthogonal matching pursuit[C]. IEEE,2014. [22] WEI Hualiang,BILLINGS S A,LIU J. Term and variable selection for non-linear system identification[J]. International Journal of Control,2004,77(1):86-110. [23] ZHANG Long,LI Kang. Forward and backward least angle regression for nonlinear system identification[J]. Automatica,2015,53:94-102. [24] 陈志杰. 高等代数与解析几何[M]. 北京:高等教育出版社,2001. CHEN Zhijie. Higher algebra and analytical geometry[M]. Beijin:Higher Education Press,2001. [25] 丁锋. 系统辨识算法的复杂性、收敛性及计算效率研究[J]. 控制与决策,2016,31(10):1729-1741. DING Feng. Research on complexity,convergence and computational efficiency of system identifica-tion algorithms[J]. Control and Decision-making,2016,31(10):1729-1741. [26] MA Ying,LIU Haopeng,ZHU Yunpeng,et al. The NARX model-based system identification on nonlinear,rotor-bearing systems[J]. Applied Sciences,2017,7(9). [27] GE Xiaobiao,LUO Zhong,MA Ying,et al. A novel data-driven model based parameter estimation of nonlinear systems[J]. Journal of Sound and Vibration,2019,453:188-200. [28] MUJI S,RAHIM R A,RAHIMAN M,et al. Optical tomography:Image improvement using mixed projection of parallel and fan beam modes[J]. Measurement,2013,46(6):1970-1978. [29] 罗忠,陈广凯,李建章,等. 考虑轴承刚度的转子系统动力学相似模型设计[J]. 东北大学学报(自然科学版),2015,36(03):402-405. LUO Zhong,CHEN Guangkai,LI Jianzhang. Design of a similar model for rotor system dynamics considering bearing stiffness[J]. Journal of Northeastern University (Natural Science Edition),2015,36(03):402-405.