Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (13): 1-21.doi: 10.3901/JME.2022.13.001
Previous Articles Next Articles
CUI Rui1,2, CHEN Diansheng3, SU Peng4, LI Jian5,6, SUN Hao1,2
Received:
2021-07-13
Revised:
2021-11-21
Online:
2022-07-05
Published:
2022-09-13
CLC Number:
CUI Rui, CHEN Diansheng, SU Peng, LI Jian, SUN Hao. Research Progress on Trajectory Planning of Fracture Reduction and Deformity Correction Robot[J]. Journal of Mechanical Engineering, 2022, 58(13): 1-21.
[1] 王岩. 坎贝尔骨科手术学[M]. 北京:人民军医出版社,2009. WANG Yan. Campbell's operative orthopaedics[M]. Beijing:People's Medical Officer Press,2009. [2] 胥少汀,葛宝丰,徐印坎. 实用骨科学[M]. 3版. 北京:人民军医出版社,2005. XU Shaoting,GE Baofeng,XU Yinkan. Practical orthopedics[M]. 3rd ed. Beijing:People's Medical Officer Press,2005. [3] 王庆生. 股骨干骨折钢板内固定术后不愈合21例原因分析[J]. 中国医药导报,2008(32):143-144. WANG Qingsheng. Cause analysis of 21 cases of non-healing after internal plate fixation of femoral stem fractures[J]. China Medical Herald,2008(32):143-144. [4] 杜志江,孙立宁,富历新. 医疗机器人发展概况综述[J]. 机器人,2003(2):182-187. DU Zhijiang,SUN Lining,FU Lixin. An overview of medical robots[J]. Robot,2003(2):182-187. [5] WESTPHAL R,O'LOUGHLIN P F,KENDOFF D,et al. A rat model for evaluating physiological responses to femoral shaft fracture reduction using a surgical robot[J]. Journal of Orthopaedic Research,2008,26(12):1656-1659. [6] GANGER R,RADLER C,SPEIGNER B,et al. Correction of post-traumatic lower limb deformities using the Taylor spatial frame[J]. International Orthopaedics,2010,34(5):723-730. [7] 吴冬梅,杜志江,贾志恒,等. 机器人辅助正骨手术系统虚拟环境精确建模方法[J]. 哈尔滨工业大学学报,2006,38(6):859-861. WU Dongmei,DU Zhijiang,JIA Zhiheng,et al. Precise modeling of virtual surgical environment of robot-assisted orthopedic surgery system[J]. Journal of Harbin Institute of Technology,2006,38(6):859-861. [8] WESTPHAL R,WINKELBACH S,GOSLING T,et al. A surgical telemanipulator for femur shaft fracture reduction[J]. The International Journal of Medical Robotics and Computer Assisted Surgery,2006,2(3):238-250. [9] FUCHTMEIER B,EGERSDOERFER S,MAI R,et al. Reduction of femoral shaft fractures in vitro by a new developed reduction robot system 'RepoRobo'[J]. Injury,2004,35(1):113-119. [10] FMAEDA Y,SUGANO N,SAITO M,et al. Robot-assisted femoral fracture reduction:Preliminary study in patients and healthy volunteers[J]. Computer Aided Surgery,2008,13(3):148-156. [11] 秦泗河,夏和桃,彭爱民,等. 胫骨与跟腱同步弹性延长器的设计与临床应用[J]. 中华外科杂志,2004(19):8-11. QIN Sihe,XIA Hetao,PENG Aimin,et al. The design and application of synchronized springy lengthening apparatus for the tibia and tendo calcaneus[J]. Chinese Journal of Surgery,2004(19):8-11. [12] 龚敏丽,徐颖,唐佩福,等. 3维CT图像导航的并联机构辅助股骨复位方法[J]. 机器人,2011,33(3):303-306,346. GONG Minli,XU Ying,TANG Peifu,et al. 3D CT image-guided parallel mechanism-assisted femur fracture reduction[J]. Robot,2011,33(3):303-306,346. [13] THOMAS G,ROLF W,JENS F,et al. Forces and torques during fracture reduction:Intraoperative measurements in the femur[J]. Journal of Orthopaedic Research,2006,24(3):333-338. [14] SEIDE K,FASCHINGBAUER M,WENZL M E,et al. A hexapod robot external fixator for computer assisted fracture reduction and deformity correction[J]. The International Journal of Medical Robotics and Computer Assisted Surgery,2004,1(1):64-69. [15] DAGNINO G,GEORGILAS I,KHLER P,et al. Navigation system for robot-assisted intra-articular lower-limb fracture surgery[J]. International Journal of Computer Assisted Radiology and Surgery,2016,11(10):1831-1843. [16] 林威,江五讲. 工业机器人笛卡尔空间轨迹规划[J]. 机械工程与自动化,2014(5):141-143. LIN Wei,JIANG Wujiang. Trajectory planning of industrial robot in cartesian space[J]. Mechanical Engineering & Automation,2014(5):141-143. [17] 史刚,张肖在,祁富贵,等. 长骨骨干骨折复位机器人研究现状与展望[J]. 医疗卫生装备,2019,40(1):93-99. SHI Gang,ZHANG Xiaozai,QI Fugui,et al. Review of relative researches on long-bone shaft fracture reduction robot[J]. Chinese Medical Equipment Journal,2019,40(1):93-99. [18] TANG P F,HU L,DU H L,et al. Novel 3D hexapod computer-assisted orthopaedicsurgery system for closed diaphyseal fracture reduction[J]. The International Journal of Medical Robotics and Computer Assisted Surgery,2012,8(1):17-24. [19] 史刚,朱世磊,张自启,等. 股骨干骨折复位机器人主从控制系统的设计[J]. 中国医疗设备,2018,33(7):17-21. SHI Gang,ZHU Shilei,ZHANG Ziqi,et al. Design of master-slave control system for femoral shaft fracture reduction robot[J]. China Medical Devices,2018,33(7):17-21. [20] PALEY D. Problems,obstacles,and complications of limb lengthening by the Ilizarov technique[J]. Clinical Orthopaedics & Related Research,1990,250:81. [21] 倪自强,王田苗,刘达. 医疗机器人技术发展综述[J]. 机械工程学报,2015,51(13):45-52. NI Ziqiang,WANG Tianmiao,LIU Da. Survey on medical robotics[J]. Journal of Mechanical Engineering,2015,51(13):45-52. [22] 夏和桃,张晓林. 组合式外固定器的研制与临床应用[J]. 中华创伤杂志,1992(5):263-265,318. XIA Hetao,ZHANG Xiaolin. Study,manufacture and clinical application of combined external fixer[J]. Chinese Journal of Traumatology,1992(5):263-265,318. [23] ZUO Shiping,DONG Mingjie,LI Jianfeng,et al. Configuration design and correction ability evaluation of a novel external fixator for foot and ankle deformity treated by U osteotomy[J]. Medical & Biological Engineering & Computing,2020,58(3):541-558. [24] 韩洪志. 骨外固定矫形支架系统研究与开发[D]. 杭州:浙江工业大学,2016. HAN Hongzhi. Research and development of bone external fixation system[D]. Hangzhou:Zhejiang University of Technology,2006. [25] 邸洁. 基于OpenGL的泰勒骨外固定器仿真关键技术研究[D]. 天津:河北工业大学,2015. DI Jie. Researches on key technologies of simulation of Taylor external fixator based on OpenGL[D]. Tianjin:Hebei University of Technology,2015. [26] 李黎,尚俊云,冯艳丽,等. 关节型工业机器人轨迹规划研究综述[J]. 计算机工程与应用,2018,54(5):36-50. LI Li,SHANG Junyun,FENG Yanli,et al. Research of trajectory planning for articulated industrial robot[J]. Computer Engineering and Application,2018,54(5):36-50. [27] HU Lei,ZHANG Jie,LI Changsheng,et al. A femur fracture reduction method based on anatomy of the contralateral side[J]. Computers in Biology and Medicine,2013,43(7):840-846. [28] GUSTAFSSON A,TOGNINI M,BENGTSSON F,et al. Subject-specific FE models of the human femur predict fracture path and bone strength under single-leg-stance loading[J]. Journal of the Mechanical Behavior of Biomedical Materials,2021,113:104-118. [29] 朱庆. 柔性驱动股骨干骨折复位机器人系统研究[D]. 南京:东南大学,2018. ZHU Qing. Research on robotic-assisted femoral shaft fracture reduction system based on compliant actuator[D]. Nanjing:Southeast University,2018. [30] 桑圣楠,刘文勇,侯晓龙,等. 机器人辅助骨矫形路径的渐进式规划方法[J]. 机械设计,2018,35(S1):15-18. SANG Shengnan,LIU Wenyong,HOU Xiaolong,et al. Progressive path planning for robot assisted orthopaedic deformity correction[J]. Journal of Machine Design,2018,35(S1):15-18. [31] KIM Y H,INOUE N,CHAO E Y. Kinematic simulation of fracture reduction and bone deformity correction under unilateral external fixation[J]. Journal of Biomechanics,2002,35(8):1047-1058. [32] LI Changsheng,WANG Tianmiao,HU Lei,et al. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction[J]. Proceedings of the Institution of Mechanical Engineers,Part H. Journal of Engineering in Medicine,2015,229(9):629-637. [33] 徐晓强,秦品乐,曾建朝. 基于改进粒子群优化算法的牙齿正畸路径规划方法[J]. 计算机应用,2020,40(7):1938-1943. XU Xiaoqiang,QIN Pinle,ZENG Jianchao. Orthodontic path planning based on improved particle swarm optimization algorithm[J]. Journal of Computer Applications,2020,40(7):1938-1943. [34] 孙昊,张习帅,陈建文,等. 基于蚁群算法的骨外固定器处方优化[J]. 仪器仪表学报,2018,39(10):232-240. SUN Hao,ZHANG Xishuai,CHEN Jianwen,et al. Optimization of electronic prescription for parallel external fixator based on ant colony algorithm[J]. Chinese Journal of Scientific Instrument,2018,39(10):232-240. [35] 雷静桃,王洋,程利亚,等. 基于复位路径包络误差和改进人工势力场法的复位机器人安全策略[J]. 机械工程学报,2020,56(1):9-19. LEI Jingtao,WANG Yang,CHENG Liya,et al. Safety strategy of fracture reduction robot based on the envelope error of reduction path and improved artificial force field method[J]. Journal of Mechanical Engineering,2020,56(1):9-19. [36] 石开铭. 基于有限变形理论的套管柔性针运动建模及路径规划研究[D]. 哈尔滨:哈尔滨理工大学,2019. SHI Kaiming. Motion modeling and path planning of cannula flexible needle based on finite deformation theory[D]. Harbin:Harbin University of Science and Technology,2019. [37] 赵弥毫. 穿戴式辅助接骨并联机器人系统研究[D]. 哈尔滨:哈尔滨工业大学,2008. ZHAO Mihao. Research on wearable parallel robot system for bone-setting surgery[D]. Harbin:Harbin Institute of Technology,2008. [38] 郭悦,董鑫宇,苏秀云,等. 六自由度并联机器人模拟中医正骨手法复位简单骨折的可行性研究[J]. 中医正骨,2020,32(7):1-5. GUO Yue,DONG Xinyu,SU Xiuyun,et al. A feasibility study of simulated TCM bone-setting manipulative reduction using 6-degree of freedom parallel robot for treatment of simple fractures[J]. The Journal of Traditional Chinese Orthopedics and Traumatology,2020,32(7):1-5. [39] 周文迪. 上肢康复训练机器人路径规划与控制[D]. 长春:长春大学,2020. ZHOU Wendi. Path planning and control of upper limb rehabilitation training robot[D]. Changchun:Changchun University,2020. [40] DAVID G,JOSHUE R,VICENTE M,et al. A review of motion planning techniques for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2016,17(4):1135-1145. [41] JOHN G,ALBERTO O,ERNESTO S. Energy-optimal trajectory planning for robot manipulators with holonomic constraints[J]. Systems & Control Letters,2011,61(2):279-291. [42] ZHAO Tao,ZI Bin,QIAN Sen,et al. Algebraic method-based point-to-point trajectory planning of an under-constrained cable-suspended parallel robot with variable angle and height cable mast[J]. Chinese Journal of Mechanical Engineering,2020,33(4):53-70. [43] YANG Xue,WANG Hongbo,SUN Li,et al. Operation and force analysis of the guide wire in a minimally invasive vascular interventional surgery robot system[J]. Chinese Journal of Mechanical Engineering,2015,28(2):249-257. [44] JAHANPOUR J,MOTALLEBI M,PORGHOVEH M. A novel trajectory planning scheme for parallel machining robots enhanced with NURBS curves[J]. Journal of Intelligent & Robotic Systems,2016,82(2):257-275. [45] 毛若愚. 六轴串联机器人控制系统的研究与应用[D]. 大连:大连理工大学,2019. MAO Ruoyu. Research and application of six-axis serial robot control system[D]. Dalian:Dalian University of Technology,2019. [46] 丁阳,顾寄南. 基于QPSO算法的机器人时间最优轨迹规划[J]. 自动化与仪器仪表,2020(1):16-19. DING Yang,GU Jinan. Time-optimal trajectory planning of robot based on QPSO[J]. Automation & Instrumentation,2020(1):16-19. [47] MARTIN B J. Minimum-effort motions for open-chain manipulators with task-dependent end-effector constraints[J]. The International Journal of Robotics Research,1999,18(2):213-224. [48] LIN H. A Fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization[J]. Journal of Intelligent & Robotic Systems,2014,75(3-4):379-392. [49] 孙志毅,张韵悦,李虹,等. 挖掘机的最优时间轨迹规划[J]. 机械工程学报,2019,55(5):166-174. SUN Zhiyi,ZHANG Yunyue,LI Hong,et al. Time optimal trajectory planning of excavator[J]. Journal of Mechanical Engineering,2019,55(5):166-174. [50] WANG Xiaobang,SUN Wei,LI Eryang,et al. Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning[J]. Structural and Multidisciplinary Optimization,2018,58(5):2219-2237. [51] VASS G,LANTOS B,PAYANDEH S. Real-time optimized robot trajectory planning with jerk[J]. IFAC Proceedings Volumes,2003,36(17):265-271. [52] 浦玉学,舒鹏飞,蒋祺,等. 工业机器人时间-能量最优轨迹规划[J]. 计算机工程与应用,2019,55(22):86-90,151. PU Yuxue,SHU Pengfei,JIANG Qi,et al. Time-energy optimum trajectory planning for industrial robot[J]. Computer Applications and Software,2019,55(22):86-90,151. [53] GASPARETTO A,LANZUTTI A,VIDONI R,et al. Experimental validation and comparative analysis of optimal time-jerk algorithms for trajectory planning[J]. Robotics and Computer Integrated Manufacturing,2011,28(2):164-181. [54] 杜海龙. 基于Stewart平台的并联骨折智能复位系统的研发及应用[D]. 北京:中国人民解放军军医进修学院,2011. DU Hailong. Development and application of the parallel intelligent reduction system of fractures on the basis of Stewart platform[D]. Beijing:Chinese PLA General Hospital & Postgraduate Medical School,2011. [55] 马宇豪,梁雁冰. 一种基于六次多项式轨迹规划的机械臂避障算法[J]. 西北工业大学学报,2020,38(2):392-400. MA Yuhao,LIANG Yanbing. An obstacle avoidance algorithm for manipulators based on six-order polynomial trajectory planning[J]. Journal of Northwestern Polytechnical University,2020,38(2):392-400. [56] 曾德全,余卓平,张培志,等. 三次B样条曲线的无人车避障轨迹规划[J]. 同济大学学报,2019,47(S1):159-163. ZENG Dequan,YU Zhuoping,ZHANG Peizhi,et al. Cubic B-spline curve for obstacle avoidance trajectory planning of unmanned vehicle[J]. Journal of Tongji University,2019,47(S1):159-163. [57] CHWA D,KANG J,CHOI J Y. Online trajectory planning of robot arms for interception of fast maneuvering object under torque and velocity constraints[J]. IEEE Trans. Systems,Man,and Cybernetics,Part A,2005,35(6):831-843. [58] 陈瑛. 航天器交会与接近操作采样运动规划与控制[D]. 哈尔滨:哈尔滨工业大学,2020. CHEN Ying. RRT-based trajectory planning and control for spacecraft autonomous rendezvous and proximity operations[D]. Harbin:Harbin Institute of Technology,2020. [59] 陈杰,毛范海. 少自由度串联机器人的误差分析和补偿方法[J]. 现代机械,2020(5):30-34. CHEN Jie,MAO Fanhai. Error analysis and compensation method for low-degree-of-freedom series robots[J]. Modern Machinery,2020(5):30-34. [60] 姚立纲,廖志炜,卢宗兴,等. 踝关节章动式康复运动轨迹规划[J]. 机械工程学报,2018,54(21):33-40. YAO Ligang,LIAO Zhiwei,LU Zongxing,et al. Nutation motion based on trajectory planning for a novel hybrid ankle rehabilitation device[J]. Journal of Mechanical Engineering,2018,54(21):33-40. [61] 柯振辉,朱华炳,何双华. 六自由度串联机器人轨迹误差分析与实验研究[J]. 组合机床与自动化加工技术,2018(10):64-67,72. KE Zhenhui,ZHU Huabing,HE Shuanghua. Error analysis and experimental study of 6-DOF serial robot[J]. Modular Machine Tool & Automatic Manufacturing Technique,2018(10):64-67,72. [62] 高涵,张明路,张小俊. 冗余机械臂空间轨迹规划综述[J]. 机械传动,2016,40(10):176-180. GAO Han,ZHANG Minglu,ZHANG Xiaojun. A review of the space trajectory planning of redundant manipulator[J]. Journal of Mechanical Transmission,2016,40(10):176-180. [63] 彭斯洋. 4-RUPaR并联机器人尺度优化设计及轨迹规划[D]. 重庆:重庆理工大学,2018. PENG Siyang. Scale optimization design and trajectory planning of 4-RUPaR parallel robot[D]. Chongqing:Chongqing University of Technology,2018. [64] 刘文彩,许勇,陈佳丽,等. 6-SPU并联机器人的轨迹规划与仿真[J]. 机械传动,2019,43(6):75-82. LIU Wencai,XU Yong,CHEN Jiali,et al. Trajectory planning and simulation of 6-SPU parallel robot[J]. Journal of Mechanical Transmission,2019,43(6):75-82. [65] LI Jianfeng,LI Guotong,DONG Mingjie,et al. Comparison of three different correction trajectories for foot and ankle deformity treated by supramalleolar osteotomy using a novel external fixator[J]. International Journal for Numerical Methods in Biomedical Engineering,2020,36(12):1-21. [66] 张金明,陈永秋. 基于遗传算法的机器人轨迹插值方法的研究[J]. 组合机床与自动化加工技术,2020(5):48-51. ZHANG Jinming,CHEN Yongqiu. Research on robot trajectory interpolation method based on genetic algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique,2020(5):48-51. [67] 孙亮,马江,阮晓钢. 六自由度机械臂轨迹规划与仿真研究[J]. 控制工程,2010,17(3):388-392. SUN Liang,MA Jiang,RUAN Xiaogang. Trajectory planning and simulation of 6-DOF manipulator[J]. Control Engineering of China,2010,17(3):388-392. [68] 董甲甲,王太勇,董靖川,等. 改进B样条曲线应用于6R机器人轨迹优化[J]. 中国机械工程,2018,29(2):193-200. DONG Jiajia,WANG Taiyong,DONG Jingchuan,et al. Applications of improved B-spline curves to 6R robot trajectory optimization[J]. China Mechanical Engineering,2018,29(2):193-200. [69] 刘献礼,周肖阳,李茂月,等. NURBS曲线S形加减速寻回实时插补算法[J]. 机械工程学报,2017,53(3):183-192. LIU Xianli,ZHOU Xiaoyang,LI Maoyue,et al. The real-time algorithm of NURBS curve retriever interpolation with S-type acceleration and deceleration control[J]. Journal of Mechanical Engineering,2017,53(3):183-192. [70] 张三元,蒋方炎. 空间曲线的圆弧样条插值[J]. 中国图象图形学报,1999(8):84-88. ZHANG Sanyuan,JIANG Fangyan. Interpolating space curve with circular arc spline[J]. Journal of Image and Graphics,1999(8):84-88. [71] ELIEL B D,MORAN S,IDO R,et al. Evaluation of a CT-guided robotic system for precise percutaneous needle insertion[J]. Journal of Vascular and Interventional Radiology,2018,29(10):1440-1446. [72] 舒鹏飞. 六轴工业机器人的轨迹优化研究[D]. 合肥:合肥工业大学,2020. SHU Pengfei. Research on trajectory optimization of 6-DOF industrial robots[D]. Hefei:Hefei University of Technology,2020. [73] RUIHUA YE,YONGHUA CHEN. Path planning for robot assisted femur shaft fracture reduction:A preliminary investigation[C]//IEEE International Conference on Virtual Environments,Human-Computer Interfaces and Measurement Systems,11-13 May,2009,Hong Kong,China. IEEE,2009:113-117. [74] 李孟歆,李冲. 基于3TPS/TP型并联机器人的轨迹规划算法[J]. 电子技术与软件工程,2014(23):111. LI Mengxin,LI Chong. Trajectory planning algorithm based on 3TPS/TP parallel robots[J]. Electronic Technology & Software Engineering,2014(23):111. [75] WANG P,YANG H,XUE K. Jerk-optimal trajectory planning for Stewart platform in joint space[C]//IEEE International Conference on Mechatronics and Automation,2-5 August,2015,Beijing,China. IEEE,2015:1932-1937. [76] GUO Yue,ZHANG Lu,WEI Mengting,et al. The study of multifunction external fixator based on Stewart platform[C]//MATEC Web of Conferences,2015,31:1-4. [77] 张伟. 仿生青蛙机器人及其游动轨迹规划的研究[D]. 哈尔滨:哈尔滨工业大学,2017. ZHANG Wei. Research on the frog inspired robot and its swimming trajectory planning[D]. Harbin:Harbin Institute of Technology,2017. [78] 郭娟. 基于粒子群算法的双臂机器人运动轨迹优化研究[J]. 中国工程机械学报,2020,18(4):324-329. GUO Juan. Research on trajectory optimization of dual-arm robot based on particle swarm optimization[J]. Chinese Journal of Construction Machinery,2020,18(4):324-329. [79] 张玲,崔建涛,孙海燕,等. 轮式移动机器人机械臂最优轨迹控制算法仿真[J]. 计算机仿真,2019,36(12):288-291,295. ZHANG Ling,CUI Jiantao,SUN Haiyan,et al. Simulation of optimal trajectory control algorithm for wheeled mobile robot manipulator[J]. Computer Simulation,2019,36(12):288-291,295. [80] KODAGODA S,SEHESTEDT S,DISSANAYAKE G. Socially aware path planning for mobile robots[J]. Robotica,2014,34(3):513-526. [81] TANG Bijun,HIROTA K,WU Xiangdong,et al. Path planning based on improved hybrid A* algorithm[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics,2021,25(1):64-72. [82] BUSCHBAUM J,FREMD R,POHLEMANN T,et al. Introduction of a computer-based method for automated planning of reduction paths under consideration of simulated muscular forces[J]. International Journal of Computer Assisted Radiology and Surgery,2017,12(8):1369-1381. [83] 陈劲峰,黄卫华,章政,等. 动态环境下基于改进人工势场法的路径规划算法[J]. 组合机床与自动化加工技术,2020(12):6-9,14. CHEN Jinfeng,HUANG Weihua,ZHANG Zheng,et al. Path planning algorithm based on improved artificial potential field method in dynamic environment[J]. Modular Machine Tool & Automatic Manufacturing Technique,2020(12):6-9,14. [84] 马小陆,梅宏. 基于改进势场蚁群算法的移动机器人全局路径规划[J]. 机械工程学报,2021,57(1):19-27. MA Xiaolu,MEI Hong. Ant colony optimization with improved potential field heuristic for robot path planning[J]. Journal of Mechanical Engineering,2021,57(1):19-27. [85] 刘密,刘检华,何永熹,等. 复杂结构条件下的装配路径求解与优化技术[J]. 机械工程学报,2013,49(9):97-105. LIU Mi,LIU Jianhua,HE Yongxi,et al. Research on assembly path planning and optimization of complex structures[J]. Journal of Mechanical Engineering,2013,49(9):97-105. [86] 张伟民,付仕雄.基于改进RRT*算法的移动机器人路径规划[J]. 华中科技大学学报,2021,49(1):31-36. ZHANG Weimin,FU Shixiong. Mobile robot path planning based on improved RRT*algorithm[J]. Journal of Huazhong University of Science and Technology,2021,49(1):31-36. [87] ALLEN R E,PAVONE M. A real-time framework for kinodynamic planning in dynamic environments with application to quadrotor obstacle avoidance[J]. Robotics and Autonomous Systems,2019,115:174-193. [88] 王毅然,经小川,田涛,等. 基于强化学习的多Agent路径规划方法研究[J]. 计算机应用与软件,2019,36(8):165-171. WANG Yiran,JING Xiaochuan,TIAN Tao,et al. Multi-Agent path planning based on reinforcement learning[J]. Computer Applications and Software,2019,36(8):165-171. [89] 任艳青,方灶军,徐德,等. 基于模糊神经网络的乒乓球旋转飞行轨迹模式分类[J]. 控制与决策,2014,29(2):263-269. REN Yanqing,FANG Zaojun,XU De,et al. Spinning pattern classification of table tennis ball's flying trajectory based on fuzzy neural network[J]. Control and Decision,2014,29(2):263-269. [90] 朴松昊,洪炳熔. 一种动态环境下移动机器人的路径规划方法[J]. 机器人,2003(1):18-21,43. PIAO Songhao,HONG Bingrong. A path planning approach to mobile robot under dynamic environment[J]. Robot,2003(1):18-21,43. [91] 茹琦. 结合先验知识的深度Q神经网络算法在室内路径规划中的研究与应用[D]. 合肥:合肥工业大学,2018. RU Qi. Research and application of deep Q neural network algorithm combined with prior knowledge in indoor path planning[D]. Hefei:Hefei University of Technology,2018. [92] 朱斐,吴文,伏玉琛,等. 基于双深度网络的安全深度强化学习方法[J]. 计算机学报,2019,42(8):1812-1826. ZHU Fei,WU Wen,FU Yuchen,et al. A dual deep network based secure deep reinforcement learning method[J]. Chinese Journal of Computers,2019,42(8):1812-1826. [93] JOUNG S,LIAO H,KOBAYASHI E,et al. Hazard analysis of fracture-reduction robot and its application to safety design of fracture-reduction assisting robotic system[C]//IEEE International Conference on Robotics and Automation,3-7 May,2010,Anchorage,Alaska,USA. IEEE,2010:1554-1561. [94] FU Zhuoxin,SUN Hao,DONG Xinyu,et al. Indirect visual guided fracture reduction robot based on external markers[J]. The International Journal of Medical Robotics and Computer Assisted Surgery,2020,17(1):1-11. [95] BUSCHBAUM J,FREMD R,POHLEMANN T,et al. Computer-assisted fracture reduction:A new approach for repositioning femoral fractures and planning reduction paths[J]. International Journal of Computer Assisted Radiology and Surgery,2015,10(2):149-159. [96] LI Changsheng,WANG Tianmiao,HU Lei,et al. Accuracy analysis of a robot system for closed diaphyseal fracture reduction[J]. International Journal of Advanced Robotic Systems,2014,11:1-11. [97] WESTPHAL R,WINKELBACH S,WAHL F,et al. Robot-assisted long bone fracture reduction[J]. International Journal of Robotics Research,2009,28(10):1259-1278. [98] 王军强,胡磊,苏永刚,等. 下肢骨折牵引复位器的设计和临床初步应用[J]. 中华外科杂志,2010,48(18):1425-1429. WANG Junqiang,HU Lei,SU Yonggang,et al. Primary clinical application of traction reductor for lower limb fracture[J]. Chinese Journal of Surgery,2010,48(18):1425-1429. [99] THOMAS G,ROLF W,JENS F,et al. Forces and torques during fracture reduction:Intraoperative measurements in the femur[J]. Journal of Orthopaedic Research,2006,24(3):333-338. [100] LI Changsheng,WANG Tianmiao,HU Lei,et al. Robot-musculoskeletal dynamic biomechanical model in robot-assisted diaphyseal fracture reduction[J]. Bio-Medical Materials and Engineering,2015,26(s1):S365-S374. [101] KIM W Y,KO S Y,PARK J,et al. 6-DOF force feedback control of robot-assisted bone fracture reduction system using double F/T sensors and adjustable admittances to protect bones against damage[J]. Mechatronics:The Science of Intelligent Machines,2016,35:136-147. [102] ZHANG Xishuai,SUN Hao,CHEN Jianwen,et al. Optimization of electronic prescription for parallel external fixator based on genetic algorithm[J]. International Journal of Computer Assisted Radiology and Surgery,2019,14(5):861-871. [103] MOHAMMADI H,YAO Hong,KHADEMI G,et al. Extended kalman filtering for state estimation of a hill muscle model[J]. IET Control Theory & Applications,2018,12(3):384-394. [104] ZUK M,SYCZEWSKA M,PEZOWICZ C. Use of the surface electromyography for a quantitative trend validation of estimated muscle forces[J]. Biocybernetics and Biomedical Engineering,2018,38(2):243-250. [105] CHEN Yupei,LAN Yishan,HU Wenlong,et al. Nonoperative manipulative reduction with chinese herbs for the treatment of a displaced olecranon fracture:A case report[J]. Medicine,2018,97(21):e10818. [106] 龙明星. 多功能骨科机器人概念样机的搭建及长骨骨折复位系统的研究与测试[D]. 天津:天津医科大学,2019. LONG Duoxing. Development of a multifunctional orthopaedic robotic system and validation for its application in long bone fracture reduction[D]. Tianjin:Tianjin Medical University,2019. [107] NEEDLEMAN R L. Accurate reduction of an ankle syndesmosis with the "glide path" technique[J]. Foot and Ankle International,2013,34(9):1308-1311. [108] DIRHOLD B M,CITAK M,Al-KHATEEB H,et al. Current state of computer-assisted trauma surgery[J]. Current Reviews in Musculoskeletal Medicine,2012,5(3):184-191. [109] 陈秋莲,蒋环宇,郑以君. 机器人路径规划的快速扩展随机树算法综述[J]. 计算机工程与应用,2019,55(16):10-17. CHEN Qiulian,JIANG Huanyu,ZHENG Yijun. Summary of rapidly-exploring random tree algorithm in robot path planning[J]. Computer Engineering and Applications,2019,55(16):10-17. [110] 王晓明,宋吉,郑继新,等. 改进B样条曲线的机器人轨迹拟合研究[J]. 传感器与微系统,2021,40(2):41-43. WANG Xiaoming,SONG Ji,ZHENG Jixin,et al. Research on robot trajectory fitting based on improved B-spline curve[J]. Transducer and Microsystem Technologies,2021,40(2):41-43. [111] FANG Yi,HU Jie,LIU Wenhai,et al. Smooth and time-optimal s-curve trajectory planning for automated robots and machines[J]. Mechanism and Machine Theory,2019,137:127-153. [112] UNSAL D,MEHMET C. Improved trajectory planning of an industrial parallel mechanism by a composite polynomial consisting of Bézier curves and cubic polynomials[J]. Mechanism and Machine Theory,2019,132:248-263. [113] 李沐蓉,雷勇,黄成,等. 基于迭代学习算法的柔性针轨迹规划[J]. 机械工程学报,2021,57(11):128-137. LI Murong,LEI Yong,HUANG Cheng,et al. Flexible needle path planning based on the iterative learning algorithm[J]. Journal of Mechanical Engineering,2021,57(11):128-137. [114] DU H L,HU L,LI C S,et al. Preoperative trajectory planning for closed reduction of long-bone diaphyseal fracture using a computer-assisted reduction system[J]. The International Journal of Medical Robotics and Computer Assisted Surgery,2015,11(1):58-66. |
[1] | QIN Guanglin, CUI Changcai, YIN Fangchen, HUANG Hui. Robotic Surface Scanning Viewpoint Planning for Complex 3D Stone Carving [J]. Journal of Mechanical Engineering, 2024, 60(8): 22-33. |
[2] | ZHANG Hang, FU Kuan, CHEN Minghao, LI Rui, SHI Xinna. Dynamic Evolution and Vibration Reduction Analysis of Multi-section Serial In-pipe Inspection Robot When Crossing Obstacles [J]. Journal of Mechanical Engineering, 2024, 60(8): 348-359. |
[3] | XU Fengyu, MA Kaiwei, SONG Julong, FAN Baojie, WU Xinjun. Vibration Reduction Mechanism and Control Method of Cable Climbing Robot Based on Spring-magnetorheological Damper [J]. Journal of Mechanical Engineering, 2024, 60(8): 384-395. |
[4] | DENG Jianxin, YUAN Bangyi, HUANG Qiulin, DING Dukun, XIN Manyu, LIU Guangming. Review on the Key Technologies of Complex Surfaces Polishing Based on Robots [J]. Journal of Mechanical Engineering, 2024, 60(7): 1-21. |
[5] | SHANG Deyong, HUANG Xinyi, HUANG Yunshan, ZHANG Tianyou. Research on Rigid-flexible Coupling Dynamics of Delta Parallel Robot Based on Kane Equation [J]. Journal of Mechanical Engineering, 2024, 60(7): 124-133. |
[6] | SHEN Shiquan, REN Kun, LI Yongguo, HAN Yunsheng, XIANG Wanting, GENG Heyang. Automatic Coloring Trajectory Planning for Metal Surface Special-Shaped Zones [J]. Journal of Mechanical Engineering, 2024, 60(7): 258-265. |
[7] | ZHOU Chen, XU Feixiang. Multi-objective Optimization Method for Steering Mode Switch Trajectory of Four-wheel Independent Steering Vehicle [J]. Journal of Mechanical Engineering, 2024, 60(6): 306-320. |
[8] | ZHANG Liyuan, YANG Jinbo, LI Ao, YANG Qingkai, XU Guangkui. Review on Configuration Design and Control of Tensegrity Spherical Robots [J]. Journal of Mechanical Engineering, 2024, 60(5): 1-18. |
[9] | LIU Daxin, WANG Ke, LIU Zhenyu, XU Jiatong, TAN Jianrong. Research on Digital Twin Modeling Method for Robotic Assembly Cell Based on Data Fusion and Knowledge Reasoning [J]. Journal of Mechanical Engineering, 2024, 60(5): 36-50. |
[10] | SHANG Deyong, HUANG Yunshan, HUANG Xinyi, PAN Zhan. Nonlinear Hybrid Control of Rigid Flexible Coupling Delta Robot Based on Singular Perturbation [J]. Journal of Mechanical Engineering, 2024, 60(5): 95-106. |
[11] | ZHOU Zuyi, YANG Yuwei, QI Wenyao, GONG Jianchao, LI Zhaotong. Method of Equivalent Inverse Solution of Multi-rigid-flexible Body Dynamics and Performance Optimization Synthesis of Waist Exoskeleton Robot [J]. Journal of Mechanical Engineering, 2024, 60(5): 107-118. |
[12] | MENG Yuan, SHI Baojun, ZHANG Dequan. Research and Improvement of Kriging-HDMR Modeling Method [J]. Journal of Mechanical Engineering, 2024, 60(5): 249-263. |
[13] | ZHANG Peng, YIN Lairong, TONG Yonggang, HUANG Long. A Trajectory Optimization Method Based on the Gap Prediction Model for Automated Tape Placement [J]. Journal of Mechanical Engineering, 2024, 60(5): 296-316. |
[14] | ZONG Huaizhi, AI Jikun, ZHANG Junhui, JIANG Lei, TAN Shujie, LIU Yuxian, SU Qi, XU Bing. Lightweight Design of Limb Leg Units for Hydraulic Quadruped Robots by Topology Optimization and Lattice Filling [J]. Journal of Mechanical Engineering, 2024, 60(4): 420-429. |
[15] | ZHAO Liangliang, LIU Ziyi, ZHAO Jingdong, DUAN Qifan, WANG Zirui, LIU Hong. Design and Verification of End-effector and Adaptation Interfaces for On-orbit Construction of Space Robot [J]. Journal of Mechanical Engineering, 2024, 60(3): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||