Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (13): 22-35.doi: 10.3901/JME.2022.13.022
Previous Articles Next Articles
LIN Zening, JIANG Tao, LUO Zirong, BAI Xiangjuan, SHANG Jianzhong
Received:
2021-07-17
Revised:
2021-11-14
Online:
2022-07-05
Published:
2022-09-13
CLC Number:
LIN Zening, JIANG Tao, LUO Zirong, BAI Xiangjuan, SHANG Jianzhong. Research Progress of Muscle-driven Robots Based on Living Tissue[J]. Journal of Mechanical Engineering, 2022, 58(13): 22-35.
[1] Wang B,KOSTARELOS K,NELSON B J,et al. Trends in micro-/nanorobotics:Materials development,actuation,localization,and system integration for biomedical applications[J]. Advanced Materials,2021,33(4):2002047. [2] 李海利,姚建涛,周盼,等. 无系留大负载软体抓持机器人研究发展综述[J]. 机械工程学报,2020,56(19):28-42. LI Haili,YAO Jiantao,ZHOU Pan,et al. Untethered,high-load soft gripping robots:A review[J]. Journal of Mechanical Engineering,2020,56(19):28-42. [3] APPIAH C,ARNDT C,SIEMSEN K,et al. Living materials herald a new era in soft robotics[J]. Adv. Mater,2019,31(36):e1807747. [4] JEONG J,JANG D,KIM D,et al. Acoustic bubble-based drug manipulation:Carrying,releasing and penetrating for targeted drug delivery using an electromagnetically actuated microrobot[J]. Sens. Actuator A Phys.,2020,306:9. [5] GO G,JEONG S G,YOO A,et al. Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo[J]. Sci. Robot,2020,5(38):15. [6] TU Z,FEI F,DENG X. Untethered flight of an at-scale dual-motor hummingbird robot with bio-inspired decoupled wings[J]. IEEE Robot. Autom. Lett,2020,5(3):4194-4201. [7] BHUSHAN P,TOMLIN C. Design of an Electromagnetic actuator for an insect-scale spinning-wing robot[J]. IEEE Robot. Autom. Lett,2020,5(3):4188-4193. [8] MISHRA A K,WALLIN T J,PAN W,et al. Autonomic perspiration in 3D-printed hydrogel actuators[J]. Sci. Robot,2020,5(38):9. [9] 曹玉君,尚建忠,梁科山,等. 软体机器人研究现状综述[J]. 机械工程学报,2012,48(3):25-33. CAO Yujun,SHANG Jianzhong,LIANG Keshan,et al. Review of soft-bodied robots[J]. Journal of Mechanical Engineering,2012,48(3):25-33. [10] 王江北,方晔阳,童歆,等. 多气囊仿生软体机器人设计及其运动特性分析[J]. 上海交通大学学报,2018,52(1):20-25. WANG Jiangbei,FANG Yeyang,TONG Xin,et al. Design and locomotion properties of a multi airbag bionic soft robot[J]. Journal of Shanghai Jiao Tong University,2018,52(1):20-25. [11] 张润玺,王贺升,陈卫东. 仿章鱼软体机器人形状控制[J]. 机器人,2016,38(6):754-759. ZHANG Runxi,WANG Hesheng,CHEN Weidong. Shape control for a soft robot inspired by octopus[J]. ROBOT,2016,38(6):754-759. [12] VO V T K,ANG M H A,KOH S J A. Maximal Performance of an antagonistically coupled dielectric elastomer actuator system[J]. Soft Robot,2020(1):13. [13] YANG X,CHANG L,PÉREZ-ARANCIBIA N O. An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle[J]. Sci. Robot.,2020,5(45):eaba0015. [14] BUSS N,YASA O,ALAPAN Y,et al. Nanoerythrosome- functionalized biohybrid microswimmers[J]. APL Bioeng,2020,4(2):026103. [15] KRIEGMAN S,BLACKISTON D,LEVIN M,et al. A scalable pipeline for designing reconfigurable organisms[J]. Proc. Natl. Acad. Sci. U. S. A.,2020,117(4):1853-1859. [16] SUN L,YU Y,CHEN Z,et al. Biohybrid robotics with living cell actuation[J]. Chem. Soc. Rev.,2020,49(12):4043-4069. [17] XIE S,JIAO N,TUNG S,et al. Controlled regular locomotion of algae cell microrobots[J]. Biomed Microdevices,2016,18(3):9. [18] KARASEK M,MUIJRES F T,DE W C,et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science,2018,361(6407):1089. [19] 孙强,王敬依,张颖,等. 毫米级潜艇形机器人在低雷诺数液体中的3D运动及微操作方法研究[J]. 机器人,2020,42(1):89-99. SUN Qiang,WANG Jingyi,ZHANG Ying,et al. On 3D motion and micro-manipulation of a millimeter-scale submarine-shaped robot in low reynolds number liquid[J]. Robot,2020,42(1):89-99. [20] RUS D,TOLLEY M T. Design,fabrication and control of soft robots[J]. Nature,2015,521(7553):467-475. [21] RICOTTI L,TRIMMER B,FEINBERG A W,et al. Biohybrid actuators for robotics:a review of devices actuated by living cells[J]. Sci. Robot.,2017,2(12):eaaq0495. [22] COYLE S,MAJIDI C,LEDUC P,et al. Bio-inspired soft robotics:Material selection,actuation,and design[J]. Extreme Mech. Lett,2018,22:51-59. [23] 张忠强,邹娇,丁建宁,等. 软体机器人驱动研究现状[J]. 机器人,2018,40(5):648-659. ZHANG Zhongqiang,ZHOU Jiao,DING Jianning,et al. Research status of the soft robot driving[J]. Robot,2018,40(5):648-659. [24] LI S,BAI H,SHEPHERD R F,et al. Bio-inspired design and additive manufacturing of soft materials,machines,robots,and haptic interfaces[J]. Angewandte Chemie-International Edition,2019,58(33):11182-11204. [25] 文力,王贺升. 软体机器人研究展望:结构、驱动与控制[J]. 机器人,2018,40(5):577. WEN Li,WANG Hesheng. Research prospect of software robot:Structure,drive and control[J]. ROBOT,2018,40(5):577. [26] 高一聪,曾思远,冯毅雄,等. 支持4D打印的可控变形结构设计研究进展[J]. 机械工程学报,2020,56(15):26-38. GAO Yicong,ZENG Siyuan,FENG Yixiong,et al. Review of design of programmable morphing composite structures by 4D printing[J]. Journal of Mechanical Engineering,2020,56(15):26-38. [27] DISTLER T,SOLISITO A A,SCHNEIDEREIT D,et al. 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting[J]. Biofabrication,2020,12(4):045005. [28] JIANG T,MUNGUIA-LOPEZ J G,FLORES-TORRES S,et al. Extrusion bioprinting of soft materials:An emerging technique for biological model fabrication[J]. Appl. Phys. Rev,2019,6(1):011310. [29] KIM S H,KIM D Y,LIM T H,et al. Silk fibroin bioinks for digital light processing (DLP) 3d bioprinting[J]. Adv. Exp. Med. Biol.,2020,1249:53-66. [30] 周颖,徐颖,刘连庆,等. 金银微纳结构的激光加工[J]. 高等学校化学学报,2015,36(8):1472-1477. ZHOU Ying,XU Ying,LIU Lianqing,et al. Direct femtosecond laser processing of gold-silver alloy nanostructure by photoreduction[J]. Chemical Journal of Chinese University,2015,36(8):1472-1477. [31] YANG G,BELLINGHAM J,DUPONT P E,et al. The grand challenges of science robotics[J]. Sci. Robot,2018,3(14):eaar7650. [32] CEYLAN H,GILTINAN J,KOZIELSKI K,et al. Mobile microrobots for bioengineering applications[J]. Lab Chip,2017,17(10):1705-1724. [33] RICOTTI L,FUJIE T. Thin polymeric films for building biohybrid microrobots[J]. Bioinspir. Biomim,2017,12(2):16. [34] Feinberg A W. Annual review of biomedical engineering[M]. Palo Alto:Annual Reviews,2015. [35] KAUFMAN C D,LIU S C,CVETKOVIC C,et al. Emergence of functional neuromuscular junctions in an engineered,multicellular spinal cord-muscle bioactuator[J]. APL Bioeng,2020,4(2):026104. [36] KIM Y,PAGAN-DIAZ G,GAPINSKE L,et al. Integration of graphene electrodes with 3d skeletal muscle tissue models[J]. Adv. Healthc. Mater,2020:e1901137. [37] ZHANG C,WANG W,XI N,et al. Development and future challenges of bio-syncretic robots[J]. Engineering,2018,4(4):452-463. [38] 邝适存,郭霞. 肌肉骨骼系统基础生物力学[M]. 北京:人民卫生出版社,2008. KUANG Shicun,GUO Xia. Basic biomechanics of the musculoskeletal system[M]. Beijing:People's Medical Publishing House,2008. [39] Williams W O. Huxley's model of muscle contraction with compliance[J]. Journal of Elasticity,2011,105(1):365-380. [40] 殷跃红. 骨骼肌力产生机理、仿生及应用[M]. 北京:国防工业出版社,2017. YIN Yuehong. Force generation mechanism,bionics and applications of skeletal muscle[M]. Beijing:National Defense Industry Press,2017. [41] Xi J,Schmidt J J,MONTEMAGNO C D. Self-assembled microdevices driven by muscle[J]. Nat. Mater,2005,4(2):180-184. [42] TANAKA Y,YANAGISAWA Y,KITAMORI T. Fluid actuation for a bio-micropump powered by previously frozen cardiomyocytes directly seeded on a diagonally stretched thin membrane[J]. Sens. Actuators B Chem.,2011,156(1):494-498. [43] RAMAN R,CVETKOVIC C,UZEL S G,et al. Optogenetic skeletal muscle-powered adaptive biological machines[J]. Proc. Natl. Acad. Sci. U. S. A,2016,113(13):3497-502. [44] HOLLEY M T,NAGARAJAN N,DANIELSON C,et al. Development and characterization of muscle-based actuators for self-stabilizing swimming biorobots[J]. Lab Chip,2016,16(18):3473-3484. [45] TANAKA Y,NOGUCHI Y,YALIKUN Y,et al. Earthworm muscle driven bio-micropump[J]. Sens. Actuators B Chem.,2017,242:1186-1192. [46] AYDIN O,ZHANG X T,NUETHONG S,et al. Neuromuscular actuation of biohybrid motile bots[J]. Proc. Natl. Acad. Sci. U. S. A.,2019,116(40):19841-19847. [47] YALIKUN Y,UESUGI K,HIROKI M,et al. Insect muscular tissue-powered swimming robot[J]. Actuators,2019,8(2):15. [48] MORIMOTO Y,ONOE H,TAKEUCHI S. Biohybrid robot with skeletal muscle tissue covered with a collagen structure for moving in air[J]. APL Bioeng,2020,4(2):026101. [49] SUN L,CHEN Z,BIAN F,et al. Bioinspired soft robotic caterpillar with cardiomyocyte drivers[J]. Adv. Funct. Mater.,2020,30(6):8. [50] 商逸璇. 基于各向异性的反蛋白石薄膜的心肌细胞培养研究[D]. 南京:东南大学,2019. SHANG Yixuan. Cardiomyocyte culture based on anisotropic inverse OPAL film[D]. Nanjing:Southeast University,2019. [51] LIU X,ZHAO H,LU Y,et al. In vitro cardiomyocyte-driven biogenerator based on aligned piezoelectric nanofibers[J]. Nanoscale,2016,8(13):7278-7286. [52] SHUTKO A V,GORBUNOV V S,GURIA K G,et al. Biocontractile microfluidic channels for peristaltic pumping[J]. Biomed Microdevices,2017,19(4):6. [53] CHEN Z,FU F,YU Y,et al. Cardiomyocytes-actuated morpho butterfly wings[J]. Adv. Mater,2019,31(8):7. [54] TANAKA N,YAMASHITA T,YALIKUN Y,et al. An ultra-small fluid oscillation unit for pumping driven by self-organized three-dimensional bridging of pulsatile cardiomyocytes on elastic micropiers[J]. Sens. Actuators B Chem.,2019,293:256-264. [55] CVETKOVIC C,RICH M H,RAMAN R,et al. A 3D-printed platform for modular neuromuscular motor units[J]. Microsyst. Nanoeng.,2017,3:9. [56] RAMAN R,GRANT L,SEO Y,et al. Damage,healing,and remodeling in optogenetic skeletal muscle bioactuators[J]. Adv. Healthc. Mater,2017,6(12). [57] KIM Y,PAGAN-DIAZ G,GAPINSKE L,et al. Integration of graphene electrodes with 3d skeletal muscle tissue models[J]. Adv. Healthc. Mater,2020,9(4):6. [58] YIN S,ZHANG X,ZHAN C,et al. Measuring single cardiac myocyte contractile force via moving a magnetic bead[J]. Biophys. J.,2005,88(2):1489-95. [59] SHANG Y,CHEN Z,FU F,et al. Cardiomyocyte-driven structural color actuation in anisotropic inverse opals[J]. Acs. Nano,2019,13(1):796-802. [60] ZHANG C,WANG J,WANG W,et al. Modeling and analysis of bio-syncretic micro-swimmers for cardiomyocyte-based actuation[J]. Bioinspir. Biomim,2016,11(5):13. [61] SHIN S R,MIGLIORI B,MICCOLI B,et al. Electrically driven microengineered bioinspired soft robots[J]. Adv. Mater,2018,30(10). [62] XU B,HAN X,HU Y,et al. A remotely controlled transformable soft robot based on engineered cardiac tissue construct[J]. Small,2019,15(18):10. [63] XU Y,WANG H,CHEN B,et al. Emerging barcode particles for multiplex bioassays[J]. Sci. China-Mater,2019,62(3):289-324. [64] WANG H,LIU Y,CHEN Z,et al. Anisotropic structural color particles from colloidal phase separation[J]. Sci. Adv.,2020,6(2):9. [65] TANAKA Y,FUJITA H. Fluid driving system for a micropump by differentiating ips cells into cardiomyocytes on a tent-like structure[J]. Sens. Actuators B Chem.,2015,210:267-272. [66] CVETKOVIC C,RAMAN R,CHAN V,et al. Three-dimensionally printed biological machines powered by skeletal muscle[J]. Proc. Natl. Acad. Sci. U. S. A,2014,111(28):10125-10130. [67] MORIMOTO Y,ONOE H,TAKEUCHI S. Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues[J]. Sci. Robot,2018,3(18):eaat4440. [68] RAMAN R,CVETKOVIC C,BASHIR R. A modular approach to the design,fabrication,and characterization of muscle-powered biological machines[J]. Nat. Protoc,2017,12(3):519-533. [69] GAO L,AKHTAR M U,YANG F,et al. Recent progress in engineering functional biohybrid robots actuated by living cells[J]. Acta Biomaterialia,2021,121:29-40. [70] AKIYAMA Y,HOSHINO T,IWABUCHI K,et al. Room temperature operable autonomously moving bio- microrobot powered by insect dorsal vessel tissue[J]. Plos One,2012,7(7):6. [71] AKIYAMA Y,SAKUMA T,FUNAKOSHI K,et al. Atmospheric-operable bioactuator powered by insect muscle packaged with medium[J]. Lab Chip,2013,13(24):4870-4880. [72] WEBSTER V A. Fabrication of electrocompacted aligned collagen morphs for cardiomyocyte powered living machines[C]//Lecture Notes in Artificial Intelligence. Berlin:Springer-Verlag Berlin,2015:429-440. [73] YAMATSUTA E,BEH S P,UESUGI K,et al. A Micro Peristaltic pump using an optically controllable bioactuator[J]. Engineering,2019,5(3):580-585. [74] AKIYAMA Y,IWABUCHI K,FURUKAWA Y,et al. Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue[J]. Lab Chip,2009,9(1):140-144. [75] WEBSTER V A. Aplysia Californica as a novel source of material for biohybrid robots and organic machines[C]//Lecture Notes in Artificial Intelligence. Cham:Springer Int Publishing Ag,2016:365-374. [76] JO C,PUGAL D,OH I K,et al. Recent advances in ionic polymer-metal composite actuators and their modeling and applications[J]. Progress In Polymer Science,2013,38(7):1037-1066. [77] HERR H,DENNIS R G. A swimming robot actuated by living muscle tissue[J]. J. Neuroeng Rehabil,2004,1(1):6. [78] PAGAN-DIAZ G J,ZHANG X,GRANT L,et al. Simulation and fabrication of stronger,larger,and faster walking biohybrid machines[J]. Adv. Funct. Mater,2018,28(23). [79] THRIVIKRAMAN G,BODA S K,BASU B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function:A tissue engineering perspective[J]. Biomaterials,2018,150:60-86. [80] RANGARAJAN S,MADDEN L,BURSAC N. Use of flow,electrical,and mechanical stimulation to promote engineering of striated muscles[J]. Ann. Biomed Eng.,2014,42(7):1391-1405. [81] AHADIAN S,OSTROVIDOV S,HOSSEINI V,et al. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior[J]. Organogenesis,2013,9(2):87-92. [82] ASANO T,ISHIZUKA T,MORISHIMA K,et al. Optogenetic induction of contractile ability in immature C2C12 myotubes[J]. Sci. Rep.,2015,5:8. [83] SHIN S R,SHIN C,MEMIC A,et al. Aligned carbon nanotube-based flexible gel substrates for engineering biohybrid tissue actuators[J]. Adv. Funct. Mater,2015,25(28):4486-4495. [84] LIU L,ZHANG C,WANG W,et al. Regulation of C2C12 differentiation and control of the beating dynamics of contractile cells for a muscle-driven biosyncretic crawler by electrical stimulation[J]. Soft Robot,2018,5(6):748-760. [85] HASEBE A,SUEMATSU Y,TAKEOKA S,et al. Biohybrid actuators based on skeletal muscle-powered microgrooved ultrathin films consisting of poly(styrene- block-butadiene-block-styrene)[J]. ACS Biomater. Sci. Eng,2019,5(11):5734-5743. [86] SAKAR M S,NEAL D,BOUDOU T,et al. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators[J]. Lab Chip,2012,12(23):4976-4985. [87] AKIYAMA Y,ODAIRA K,SAKIYAMA K,et al. Rapidly-moving insect muscle-powered microrobot and its chemical acceleration[J]. Biomed Microdevices,2012,14(6):979-986. [88] FU F,SHANG L,CHEN Z,et al. Bioinspired living structural color hydrogels[J]. Sci. Robot.,2018,3(16):8. [89] ALAPAN Y,YASA O,SCHAUER O,et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery[J]. Sci. Robot.,2018,3(17):10. [90] DUFFY R M,FEINBERG A W. Engineered skeletal muscle tissue for soft robotics:Fabrication strategies,current applications,and future challenges[J]. Wires Nanomed Nanobi.,2014,6(2):178-195. |
[1] | PENG Zilong, WU Jinyin, WANG Mengjie, LI Yinan, LAN Hongbo. Electric Field Driving Micro-scale 3D Printing Mask Electrochemical Machining Microstructure [J]. Journal of Mechanical Engineering, 2024, 60(15): 420-436. |
[2] | YAO Yufeng, PEI Shuo, GUO Junlong, WANG Jiajia. Review of Research on Upper-limb Rehabilitation Training Robots [J]. Journal of Mechanical Engineering, 2024, 60(11): 115-134. |
[3] | ZHANG Jiakun, WANG Minjie, LI Hongxia, YU Tongmin. Coupling Effect between Viscosity and Viscous Dissipation in the Microscale Flow of Polymer Melt [J]. Journal of Mechanical Engineering, 2022, 58(6): 52-61. |
[4] | ZHOU Minbo, ZHAO Xingfei, CHEN Mingqiang, KE Changbo, ZHANG Xinping. Size Effects of Growth and Evolution of Interfacial Intermetallic Compound and the Mechanical Behavior of Bump Structure Sn3.0Ag0.5Cu/Cu Cross-scale Joints in Electronic Packages [J]. Journal of Mechanical Engineering, 2022, 58(2): 259-268. |
[5] | YIN Limeng, SU Zilong, ZUO Cunguo, ZHANG Zhongwen, YAO Zongxiang, WANG Gang, WANG Shanlin, CHEN Yuhua. Experiment and Numerical Simulation of Shear Creep of Cu/SAC305/Cu Microscale Solder Joints [J]. Journal of Mechanical Engineering, 2022, 58(2): 300-306. |
[6] | LI Wangyun, LI Xingmin, WANG Jian, LIANG Jingyang, QIN Hongbo. Tensile Performance of Inhomogeneous Microscale Cu/Sn-58Bi/Cu Solder Joints under Electro-thermo-mechanical Coupled Loads [J]. Journal of Mechanical Engineering, 2022, 58(2): 307-320. |
[7] | YAO Yufeng, YANG Yunlong, GUO Junlong, PEI Shuo, SUN Lining. Review of Research on Knee-postoperative Rehabilitation Training Robot [J]. Journal of Mechanical Engineering, 2021, 57(5): 1-18. |
[8] | Jianwei Zhang, Li Li, David G. Dorrell. Control and Applications of Direct Matrix Converters: A Review [J]. Chinese Journal of Electrical Engineering, 2018, 4(2): 18-27. |
[9] | Peng Han, Ming Cheng, Sul Ademi, Milutin G. Jovanović. Brushless Doubly-Fed Machines: Opportunities and Challenges [J]. Chinese Journal of Electrical Engineering, 2018, 4(2): 1-17. |
[10] | Kai Ni, Yihua Hu, Yang Liu, Chun Gan. Overview on Fault-Tolerant Four-Switch Three-Phase Voltage Source Converters [J]. Chinese Journal of Electrical Engineering, 2017, 3(2): 87-101. |
[11] | FENG Kai, WANG Qianzhen, LI Wenjun, ZHAO Xueyuan, ZHANG Zhiming. Static and Dynamic Performance Analysis of a Novel Mesoscale Gas Foil Bearings Consider the Effect of Slip Flow [J]. Journal of Mechanical Engineering, 2017, 53(17): 103-112. |
[12] | HU Huajun, PAN Bo, SUN Jing. Friction Torque Modeling of Spacecraft Driving Mechanism Shafting [J]. Journal of Mechanical Engineering, 2017, 53(11): 75-80. |
[13] | Dong Shuai,Zhang Qianfan,Wang Rui,Wang Haole,Cheng Shukang. Development of the Z-Source Inverters and Its Key Technologies: a Review [J]. Journal of Electrical Engineering, 2016, 11(3): 1-12. |
[14] | LI Wangyun, QIN Hongbo, ZHOU Minbo, ZHANG Xinping. Mechanical Performance and Fracture Behavior of Microscale Cu/Sn-3.0Ag-0.5Cu/Cu Joints under Electro-tensile Coupled Loads [J]. Journal of Mechanical Engineering, 2016, 52(10): 46-53. |
[15] | Zhang Mingrui,Xie Qingqing,Lin Xianqi,Ouyang Li. Researches on Control Strategies of Modular Inverters Paralleling in the Power Grid [J]. Journal of Electrical Engineering, 2015, 10(7): 48-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||