Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (12): 39-54.doi: 10.3901/JME.2022.12.039
Previous Articles Next Articles
KONG Xiangxia1,2, ZHAI Junjun3, SUN Fenglian2
Received:
2021-07-07
Revised:
2022-04-01
Online:
2022-06-20
Published:
2022-09-14
CLC Number:
KONG Xiangxia, ZHAI Junjun, SUN Fenglian. Research Progress of Low-Silver Sn-0.3Ag-0.7Cu Solder for Electronic Packaging[J]. Journal of Mechanical Engineering, 2022, 58(12): 39-54.
[1] 秦红波, 李望云, 李勋平, 等. BGA结构无铅微焊点的低周疲劳行为研究[J]. 机械工程学报, 2014, 50(20):54-62. QIN Hongbo, LI Wangyun, LI Xunping, et al. Research on low cycle fatigue behavior of BGA structure lead-free solder joints[J]. Journal of Mechanical Engineering, 2014, 50(20):54-62. [2] 李望云, 秦红波, 周敏波, 等. 电-力耦合作用下Cu/Sn-3.0Ag-0.5Cu/Cu微焊点的拉伸力学性能和断裂行为[J]. 机械工程学报, 2016, 52(10):46-53. LI Wangyun, QIN Hongbo, ZHOU Minbo, et al. Mechanical performance and fracture behavior of microscale Cu/Sn-3.0Ag-0.5Cu/Cu joints under electro-tensile coupled loads[J]. Journal of Mechanical Engineering, 2016, 52(10):46-53. [3] DHAFER A S, MOHD F M S, IRFAN A B. A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products[J]. Microelectronics Reliability, 2012, 52(1):90-99. [4] SUH D, KIM D W, LIU P, et al. Effects of Ag content on fracture resistance of Sn-Ag-Cu lead-free solders under high-strain rate conditions[J]. Materials Science and Engineering:A, 2007, 460:595-603. [5] HUANG M L, ZHAO N, LIU S, et al. Drop failure modes of Sn-3.0Ag-0.5Cu solder joints in wafer level chip scale package[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6):1663-1669. [6] WEN Y N, ZHAO X C, GHEN Z G, et al. Reliability enhancement of Sn-1.0Ag-0.5Cu nano-composite solders by adding multiple sizes of TiO2 nanoparticles[J]. Journal of Alloys and Compounds, 2017, 696:799-807. [7] MOOKAM N, KANLAYASIRI K. Effect of soldering condition on formation of intermetallic phases developed between Sn-0.3Ag-0.7Cu low-silver lead-free solder and Cu substrate[J]. Journal of Alloys and Compounds, 2011, 509(21):6276-6279. [8] SUN F, HOCHSTENBACH P, DRIEL W D V, et al. Fracture morphology and mechanism of IMC in low-Ag SAC solder/UBM (Ni(P)-Au) for WLCSP[J]. Microelectronics Reliability, 2008, 48(8-9):1167-1170. [9] GU J, LEI Y P, LIN J, et al. The study of Sn-0.3Ag-0.7Cu and Sn-1.0Ag-0.5Cu solder joint reliability under board level drop impact[C]//IEEE International Conference on Electronic Packaging Technology, IEEE, 2015:491-496. [10] CHENG F J, GAO F, ZHANG J Y, et al. Tensile properties and wettability of SAC0307 and SAC105 low Ag lead-free solder alloys[J]. Journal of Materials Science, 2011, 46(10):3424-3429. [11] 高鹏, 林健, 雷永平, 等. SAC系无铅钎料中银含量对接头抗冲击性能的影响[J]. 电子元件与材料, 2014, 33(10):67-71. GAO Peng, LIN Jian, LEI Yongping, et al. Effect of silver content on impact property of SnAgCu based lead-free solder joint[J]. Electronic Components and Materials, 2014, 33(10):67-71. [12] 王春艳, 许磊, 张宇鹏. SAC0307X无铅焊料组织及接头性能研究[J]. 热加工工艺, 2013, 42(23):165-168. WANG Chunyan, XU Lei, ZHANG Yupeng. Study on microstructure and joint properties of SAC0307X lead-free solder[J]. Hot Working Technology, 2013, 42(23):165-168. [13] YANG M, JI H J, WANG S, et al. Effects of Ag content on the interfacial reactions between liquid Sn-Ag-Cu solders and Cu substrates during soldering[J]. Journal of Alloys and Compounds, 2016, 679:18-25. [14] 孙磊, 张亮, 钟素娟, 等. Sn1.0Ag0.5Cu和Sn3.0Ag0.5Cu钎料组织与性能对比研究[J]. 稀有金属, 2015, 39(7):589-593. SUN Lei, ZHANG Liang, ZHONG Sujuan, et al. Microstructure and properties of Sn1.0Ag0.5Cu and Sn3.0Ag0.5Cu lead-free solder[J]. Chinese Journal of Rare Metals, 2015, 39(7):589-593. [15] TERASHIMA S, KARIYA Y, HOSOI T, et al. Effect of silver content on thermal fatigue life of Sn-xAg-0.5Cu flip-chip interconnects[J]. Journal of Electronic Materials, 2003, 32(12):1527-1533. [16] 孙磊, 陈明和, 张亮, 等. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5):615-621. SUN Lei, CHEN Minghe, ZHANG Liang, et al. Microstructures evolution and properties of Sn-Ag-Cu solder joints[J]. Acta Metallurgica Sinica, 2017, 53(5):615-621. [17] SHNAWAH D A, SAID S B M, SABRI M F M, et al. High-reliability low-Ag-content Sn-Ag-Cu solder joints for electronics applications[J]. Journal of Electronic Materials, 2012, 41(9):2631-2658. [18] GU Y, ZHAO X, LI Y, et al. Effect of nano-Fe2O3 additions on wettability and interfacial intermetallic growth of low-Ag content Sn-Ag-Cu solders on Cu substrates[J]. Journal of Alloys and Compounds, 2015, 627:39-47. [19] 张力德. 纳米材料和纳米结构[J]. 中国科学院院刊, 2001, 16(6):444-445. ZHANG Lide. Nanomaterials and nanostructures[J]. Bulletin of Chinese Academy of Sciences, 2001, 16(6):444-445. [20] 王剑豪, 薛松柏, 吕兆萍, 等. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(7):2133-2145. WANG Jianhao, XUE Songbai, LÜ Zhaoping, et al. Present research status of lead-free solder reinforced by nanoparticles[J]. Materials Reports, 2019, 33(7):2133-2145. [21] 刘平, 钟海锋, 龙郑易, 等. Ni对SAC0307无铅钎料性能和界面的影响研究[J]. 焊接, 2014(5):27-30. LIU Ping, ZHONG Haifeng, LONG Zhengyi, et al. Study on the effect of Ni on the properties and interface of SAC0307 lead-free solder[J]. Welding, 2014(5):27-30. [22] SUNGKHAPHAITOON P, CHANTARAMANEE S. Effect of aging temperature on the microstructure and shear strength of SAC0307-0.1Ni lead-free solders in copper joints[J]. Russian Journal of Non-ferrous Metals, 2020, 61(1):89-98. [23] SARVESWARAN C, SALLEH E M, JALAR A, et al. Investigation of corrosion on SAC305, SAC0307 and SAC0307-0.03P-0.005Ni solder paste alloys in simulated body fluid (SBF)[J]. Aip Conference Proceedings, 2017, 1838:1-7. [24] LIU Y, SUN F L, LIU X J. Improving Sn-0.3Ag-0.7Cu low-Ag lead-free solder performance by adding Bi element[C]//IEEE International Forum on Strategic Technology. IEEE, 2010:1-4. [25] 卫江红, 权延慧. Bi含量对Sn-0.3Ag-0.7Cu钎料微观组织及接头性能的影响[J]. 热加工工艺, 2011, 40(21):160-167. WEI Jianghong, QUAN Yanhui. Influence of Bi content on microstructure of Sn-0.3Ag-0.7Cu solder and properties of welded joint[J]. Hot Working Technology, 2011, 40(21):160-167. [26] 姚宗湘, 罗键, 尹立孟, 等. Bi含量对Cu/Sn- 0.3Ag-0.7Cu/Cu微焊点蠕变性能的影响[J]. 中国有色金属学报, 2017, 27(12):2545-2551. YAO Zongxiang, LUO Jian, YIN Limeng, et al. Effect of Bi content on creep properties of Cu/Sn-0.3Ag-0.7Cu/Cu solder joints[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(12):2545-2551. [27] KANLAYASIRI K, SUKPIMAI K. Effects of indium on the intermetallic layer between low-Ag SAC0307-xIn lead-free solders and Cu substrate[J]. Journal of Alloys and Compounds, 2016, 668:169-175. [28] KANLAYASIRI K, ARIGA T. Influence of thermal aging on microhardness and microstructure of Sn-0.3Ag- 0.7Cu-xIn lead-free solders[J]. Journal of Alloys and Compounds, 2010, 504(1):5-9. [29] LI M, HAN J, GUO F, et al. Electromigration behavior of low-Silver Sn-0.3Ag-0.7Cu-1.6Bi-0.2In solder joints[J]. Journal of Electronic Materials, 2020, 49(7):4237-4248. [30] 张亮, TU K N, 孙磊, 等. Sn-0.3Ag-0.7Cu-xSb无铅钎料润湿性[J]. 焊接学报, 2015, 36(1):59-62. ZHANG Liang, TU K N, SUN Lei, et al. Wettability of Sn-0.3Ag-0.7Cu-xSb lead-free solders[J]. Transactions of the China Welding Institution, 2015, 36(1):59-62. [31] YAN X C, XU K X, WANG F J, et al. Effect of P and Ge doping on microstructure of Sn-0.3Ag-0.7Cu/Ni-P solder joints[J]. Soldering and Surface Mount Technology, 2016, 28(4):215-221. [32] YAO X, MING X, CAO Y, et al. Effects of Ga addition on microstructure and properties of Sn-0.3Ag-0.7Cu solder[C]//IEEE International Conference on Electronic Packaging Technology. IEEE, 2017:249-252. [33] 栗慧, 卢斌, 朱华伟. 微量Ga元素对低银系无铅钎料抗氧化性能的影响[J]. 稀有金属, 2012, 36(4):584-589. LI Hui, LU Bin, ZHU Huawei. Effect of Ga on oxidation resistance of low-silver lead-free solder[J]. Chinese Journal of Rare Metals, 2012, 36(4):584-589. [34] 张亮, 韩继光, 郭永环, 等. 稀土元素对SnAgCu焊点内部组织的影响机制[J]. 机械工程学报, 2012, 48(24):55-60. ZHANG Liang, HAN Jiguang, GUO Yonghuan, et al. Effect mechanism of rare earth on the microstructures of SnAgCu solder joints[J]. Journal of Mechanical Engineering, 2012, 48(24):55-60. [35] 沈艳兰, 顾小龙, 徐时清, 等. Ce的添加对SnAgCu系钎料组织和性能的影响[J]. 中国计量学院学报, 2011, 22(2):194-197. SHEN Yanlan, GU Xiaolong, XU Shiqing, et al. Influence of rare earth element cerium on the structure and properties of SnAgCu solders[J]. Journal of China University of Metrology, 2011, 22(2):194-197. [36] 戴文勤, 王丽凤, 何冰, 等. La对Sn-0.3Ag-0.7Cu回流焊点纳米力学性能影响[J]. 焊接学报, 2015, 36(9):75-79. DAI Wenqin, WANG Lifeng, HE Bing, et al. Effect of La on nano mechanical properties of Sn-0.3Ag-0.7Cu reflow solder joints[J]. Transactions of the China Welding Institution, 2015, 36(9):75-79. [37] 王佳, 王丽凤, 刘学. La对SnAgCu/Cu及Ni界面金属间化合物的影响[J]. 电子元件与材料, 2011, 30(5):68-68. WANG Jia, WANG Lifeng, LIU Xue. Effect of La addition on the IMC of SnAgCu/Cu and Ni[J]. Electronic Components and Materials, 2011, 30(5):68-68. [38] JIA K M, WANG L F. Effect of assembly sequence on shear behavior of solder joints in BGA under board-level structure[C]//IEEE International Conference on Electronic Packaging Technology. IEEE, 2017:98-102. [39] 冯晓乐, 杨洁. 稀土Pr对Sn-0.3Ag-0.7Cu无铅钎料显微组织和润湿性能的影响[J]. 电焊机, 2015, 45(10):116-119. FENG Xiaole, YANG Jie. Effect of Pr on microstructure and wettability of Sn-0.3Ag-0.7Cu lead-free solder[J]. Electric Welding Machine, 2015, 45(10):116-119. [40] 徐佳琛, 薛松柏, 薛鹏, 等. Sn-0.3Ag-0.7Cu-xNd钎料显微组织及性能[J]. 焊接学报, 2015, 36(1):83-86. XU Jiachen, XUE Songbai, XUE Peng, et al. Effect of Nd on properties and microstructure of Sn-0.3Ag-0.7Cu-xNd lead-free solder[J]. Transactions of the China Welding Institution, 2015, 36(1):83-86. [41] XU J C, XUE S B, XUE P, et al. Study on microstructure and properties of Sn-0.3Ag-0.7Cu solder bearing Nd[J]. Journal of Materials Science Materials in Electronics, 2016, 27(8):8771-8777. [42] DUDEK M A, CHAWLA N. Nanoindentation of rare earth-Sn intermetallics in Pb-free solders[J]. Intermetallics, 2010, 18(5):1016-1020. [43] ZHANG L, XUE S B, GAO L L, et al. Properties of SnAgCu/SnAgCuCe soldered joints for electronic packaging[J]. Journal of Materials Science:Materials in Electronics, 2010, 21(6):635-642. [44] 薛鹏, 梁伟良, 王克鸿, 等. 超低银SnAgCu钎料微焊点力学性能[J]. 焊接学报, 2017, 38(12):29-32. XUE Peng, LING Weiliang, WANG Kehong, et al. Mechanical property of joint soldered with SnAgCu containing ultra-low silver content[J]. Transactions of the China Welding Institution, 2017, 38(12):29-32. [45] 王博, 薛松柏, 王俭辛, 等. 稀土Pr对低银Sn-0.3Ag-0.7Cu-0.5Ga钎料蠕变行为的影响[J]. 稀有金属材料与工程, 2018, 47(9):55-60. WANG Bo, XUE Songbai, WANG Jianxin, et al. Effect of rare earth Pr on creep behavior of Sn-0.3Ag- 0.7Cu-0.5Ga low-Ag solder alloys[J]. Rare Metal Materials and Engineering, 2018, 47(9):55-60. [46] 韩翼龙, 薛松柏, 薛鹏, 等. Pr, Nd对Sn0.3Ag0.7Cu0.5Ga无铅钎料显微组织的影响[J]. 焊接学报, 2017, 38(1):103-106. HAN Yilong, XUE Songbai, XUE Peng, et al. Effect of Pr and Nd on the microstructure of Sn0.3Ag0.7Cu0.5Ga lead-free solder[J]. Transactions of the China Welding Institution, 2017, 38(1):103-106. [47] 郝虎, 李广东, 史耀武, 等. Sn晶须形态的研究[J]. 材料科学与工艺, 2010, 18(1):111-115. HAO Hu, LI Guangdong, SHI Yaowu, et al. Study on morphologies of Sn whisker[J]. Materials Science and Technology, 2010, 18(1):111-115. [48] YE H, XUE S, Pecht M. Effects of thermal cycling on rare earth (Pr)-induced Sn whisker/hillock growth[J]. Materials Letters, 2013, 98(1):78-81. [49] Illés B, Horváth B. Tin whisker growth from low Ag content micro-alloyed SAC solders[C]//IEEE International Spring Seminar on Electronics Technology. IEEE, 2014:152-157. [50] GEORGE E, PECHT M. Tin whisker analysis of an automotive engine control unit[J]. Microelectronics Reliability, 2014, 54(1):214-219. [51] HAN S, OSTERMAN M, MESCHTER S, et al. Evaluation of effectiveness of conformal coatings as tin whisker mitigation[J]. Journal of Electronic Materials, 2012, 41(9):2508-2518. [52] SOOD B, OSTERMAN M, PECHT M. Tin whisker analysis of Toyota's electronic throttle controls[J]. Circuit World, 2011, 37(3):4-9. [53] 朱艳, 陈梓琳, 岳赫乾, 等. 石墨烯对微焊点微观组织及性能的影响[J]. 黑龙江科技大学学报, 2020, 30(6):671-675. ZHU Yan, CHEN Zilin, YUE Heqian, et al. Effect of graphene on microstructure and property of micro-joint[J]. Journal of Heilongjiang University of Science & Technology, 2020, 30(6):671-675. [54] 王泽宇, 霸金, 马蔷, 等. 纳米材料增强复合钎料的研究进展[J]. 精密成形工程, 2018, 10(1):82-90. WANG Zeyu, BA Jin, MA Qiang, et al. Research progress on nanomaterial reinforced composite brazing filler[J]. Journal of Netshape forming Engineering, 2018, 10(1):82-90. [55] TANG Y, LUO S M, HUANG W F, et al. Effects of Mn nanoparticles on tensile properties of low-Ag Sn-0.3Ag-0.7Cu-xMn solder alloys and joints[J]. Journal of Alloys and Compounds, 2017, 719:365-375. [56] TANG Y, LUO S M, LI G Y, et al. Effect of Mn nanoparticles on interfacial intermetallic compound growth in low-Ag Sn-0.3Ag-0.7Cu-xMn solder joints[J]. Journal of Electronic Materials, 2017, 47:1673-1685. [57] TANG Y, LUO S M, LI G Y, et al. Effects of Mn nanoparticle addition on wettability, microstructure and microhardness of low-Ag Sn-0.3Ag-0.7Cu-xMn(np) composite solders[J]. Soldering and Surface Mount Technology, 2018, 30(3):153-163. [58] TANG Y, LUO S M, LI Z H, et al. Morphological evolution and growth kinetics of interfacial Cu6Sn5 and Cu3Sn layers in low-Ag Sn-0.3Ag-0.7Cu-xMn/Cu solder joints during isothermal aging[J]. Journal of Electronic Materials, 2018, 47:5913-5929. [59] 谭淇. Fe或Mn对SAC0307钎料性能的影响[D]. 哈尔滨:哈尔滨工业大学, 2014. TAN Qi. Effect of iron or manganese on the properties of SAC0307 solder[D]. Harbin:Harbin Institute of Technology, 2014. [60] 潘英才. 锰掺杂对无铅焊料Sn-0.3Ag-0.7Cu界面反应及力学性能的影响[D]. 广州:华南理工大学, 2014. PANG Yingcai. Effects of Mn doping on interfacial reaction and mechanical properties of Sn-0.3Ag-0.7Cu lead-free solder[D]. Guangzhou:South China University of Technology, 2014. [61] 甘贵生, 刘歆, 陈东, 等. 纳米镍颗粒对无铅焊料低温钎焊性能的影响[J]. 重庆理工大学学报, 2017, 31(11):64-70. GAN Guisheng, LIU Xin, CHEN Dong, et al. Effect of nano-Ni particles on the performance of joint with low-temperature soldering of lead-free solder[J]. Journal of Chongqing University of Technology, 2017, 31(11):64-70. [62] 高源. 镍纳米颗粒对低银钎料的性能影响[D]. 哈尔滨:哈尔滨工业大学, 2015. GAO Yuan. Effect of nickel nanoparticies on the performance of low silver solder[D]. Harbin:Harbin Institute of Technology, 2015. [63] 王涛, 甘贵生, 胡志兰, 等. 纳米Ni颗粒对焊锡膏的界面IMC影响[J]. 精密成形工程, 2014(6):122-126. WANG Tao, GAN Guisheng, HU Zhilan, et al. Influence of Ni nanoparticle on the interfacial intermetallic compounds of solder paste[J]. Journal of Netshape Forming Engineering, 2014(6):122-126. [64] 赵智力, 刘鑫, 李睿, 等. 纳米颗粒增强SAC0307锡膏焊点的分析[J]. 焊接学报, 2018, 39(9):95-98. ZHAO Zhili, LIU Xin, LI Rui, et al. Study on solder joint of SAC0307 solder paste reinforced by nano particles[J]. Transactions of the China Welding Institution, 2018, 39(9):95-98. [65] BAO Y, WU A, SHAO H, et al. Microstructural evolution and mechanical reliability of transient liquid phase sintered joint during thermal aging[J]. Journal of Materials Science, 2019, 51(4):765-776. [66] CHENG S, HUANG C M, PECHT M. A review of lead-free solders for electronics applications[J]. Microelectronics Reliability, 2017, 75:77-95. [67] TSAO L, CHANG S Y, LEE C I, et al. Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder[J]. Materials and Design, 2010, 31(10):4831-4835. [68] Xing W Q, YU X Y, LI H, et al. Effect of nano Al2O3 additions on the interfacial behavior and mechanical properties of eutectic Sn-9Zn solder on low temperature wetting and soldering of 6061 aluminum alloys[J]. Journal of Alloys and Compounds, 2016, 695:574-582. [69] CHANG S Y, TSAO L C, WU M W, et al. The morphology and kinetic evolution of intermetallic compounds at Sn-Ag-Cu solder/Cu and Sn-Ag-Cu- 0.5Al2O3 composite solder/Cu interface during soldering reaction[J]. Journal of Materials Science:Materials in Electronics, 2012, 23(1):100-107. [70] WU J, XUE S, WANG J, et al. Effects of α-Al2O3 nanoparticles-doped on microstructure and properties of Sn-0.3Ag-0.7Cu low-Ag solder[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(9):7372-7387. [71] WU J, XUE S, WANG J, et al. Enhancement on the high-temperature joint reliability and corrosion resistance of Sn-0.3Ag-0.7Cu low-Ag solder contributed by Al2O3 Nanoparticles (0.12wt%)[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(23):19663-19677. [72] WU J, XUE S, WANG J, et al. Effect of thermal cycling on interfacial microstructure and mechanical properties of Sn-0.3Ag-0.7Cu-(α-Al2O3) nanoparticles/Cu low-Ag solder joints[J]. Journal of Electronic Materials, 2019, 48(7):4562-4572. [73] WU J, XUE S, WANG J, et al. Effect of in-situ formed Pr-coated Al2O3 nanoparticles on interfacial microstructure and shear behavior of Sn-0.3Ag- 0.7Cu-0.06Pr/Cu solder joints during isothermal aging[J]. Journal of Alloys and Compounds, 2019, 799:124-136. [74] WU J, XUE S, WANG J, et al. Coupling effects of rare-earth Pr and Al2O3 nanoparticles on the microstructure and properties of Sn-0.3Ag-0.7Cu low-Ag solder[J]. Journal of Alloys and Compounds, 2019, 784:471-487. [75] LI Z H, TANG Y, GUO Q W, et al. Effects of CeO2 nanoparticles addition on shear properties of low-silver Sn-0.3Ag-0.7Cu-xCeO2 solder alloys[J]. Journal of Alloys and Compounds, 2019, 789:150-162. [76] LI Z H, TANG Y, GUO Q W, et al. A diffusion model and growth kinetics of interfacial intermetallic compounds in Sn-0.3Ag-0.7Cu and Sn-0.3Ag-0.7Cu-0.5CeO2 solder joints[J]. Journal of Alloys and Compounds, 2020, 818:152893. [77] TANG Y, GUO Q W, LUO S M, et al. Formation and growth of interfacial intermetallics in Sn-0.3Ag- 0.7Cu-xCeO2/Cu solder joints during the reflow process[J]. Journal of Alloys and Compounds, 2019, 778:741-755. [78] TSAO L C, WU M W, CHANG S Y. Effect of TiO2 nanoparticles on the microstructure and bonding strengths of Sn0.7Cu composite solder BGA packages with immersion Sn surface finish[J]. Journal of Materials Science:Materials in Electronics, 2012, 23(3):681-687. [79] TSAO L C, HUANG C H, CHUNG C H, et al. Influence of TiO2 nanoparticles addition on the microstructural and mechanical properties of Sn0.7Cu nano-composite solder[J]. Materials Science and Engineering:A, 2012, 545:194-200. [80] 李振龙. TiO2纳米颗粒掺杂和焊点尺寸对无铅微焊点界面反应影响的研究[D]. 广州:华南理工大学, 2016. LI Zhenlong. Influence of TiO2 nanoparticles addition and joint size on interfacial reaction of lead-free microscale solder joints[D]. Guangzhou:South China University of Technology, 2016. [81] WU R W, TSAO L C, CHEN R S. Effect of 0.5wt% nano-TiO2 addition into low-Ag Sn0.3Ag0.7Cu solder on the intermetallic growth with Cu substrate during isothermal aging[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(3):1-8. [82] SKWAREK A, PTAK P, GÓRECKI K, et al. Microstructure influence of SACX0307-TiO2 composite solder joints on thermal properties of power LED assemblies[J]. Materials, 2020, 13(7):1563-1576. [83] PTAK P, GÓRECKI K, SKWAREK A, et al. The influence of soldering process parameters on the optical and thermal properties of power LEDs[J]. Soldering and Surface Mount Technology, 2020, 32(4):191-199. [84] MIN Zhixian, QIU Yu, HU Xiaowu, et al. Effect of Cu6Sn5 nanoparticles size on the properties of Sn0.3Ag0.7Cu nano-composite solders and joints[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(4):14726-14735. [85] 汪源. 纳米Ag3Sn、Cu6Sn5颗粒对Sn基无铅焊料性能影响研究[D]. 北京:北京理工大学, 2015. WANG Yuan. Effect of Ag3Sn, Cu6Sn5 nanoparticle on properties of Sn-based lead-free solder[D]. Beijing:Beijing Institute of Technology, 2015. [86] TIKALE S, PRABHU K N. Performance of MWCNT-reinforced SAC0307/Cu solder joint under multiple reflow cycles[J]. Transactions of the Indian Institute of Metals, 2018, 71:2693-2698. [87] ZHU Z, CHAN Y C, CHEN Z, et al. Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder[J]. Materials Science and Engineering A, 2018, 727:160-169. [88] 徐连勇, 张舒婷, 荆洪阳, 等. Ag-GNSs/SnAgCu钎料纳米压痕变形行为研究[J]. 机械工程学报, 2018, 54(8):151-156. XU Lianyong, ZHANG Shuting, JING Hongyang, et al. Research on the deformation behavior of Ag-GNSs/SnAgCu solders during nanoindentation tests[J]. Journal of Mechanical Engineering, 2018, 54(8):151-156. [89] YIN L, ZHANG Z, ZUO C, et al. Microstructures and properties of Sn-0.3Ag-0.7Cu solder doped with graphene nanosheets[J]. Journal of Materials science:Materials in Electronics, 2020, 31(3):1861-1867. [90] YIN L, ZHANG Z, SU Z, et al. Effects of graphene nanosheets on the wettability and mechanical properties of Sn-0.3Ag-0.7Cu lead-free solder[J]. Journal of Electronic Materials, 2020, 49(12):7394-7399. [91] 王悔改, 张柯柯, 尹宸翔, 等. 微连接用碳基纳米颗粒增强无铅复合钎料的研究新进展[J]. 材料热处理学报, 2020, 41(3):15-26. WANG Huigai, ZHANG Keke, YIN Chenxiang, et al. Reviews on latest advances in carbon-based nano-particles enhanced lead-free composite solders for electronic micro-connection[J]. Transactions of Materials and Heat Treatment, 2020, 41(3):15-26. [92] SHEN J, TANG Q, PU Y, et al. Influence of POSS nano-particles on Sn-3.0Ag-0.5Cu-xPOSS/Cu composite solder joints during isothermal aging[J]. Journal of Materials science:Materials in Electronics, 2013, 24(12):4881-4887. [93] SHEN J, PENG C, YIN H G, et al. Influence of minor POSS molecules additions on the microstructure and hardness of Sn3Ag0.5Cu-xPOSS composite solders[J]. Journal of Materials science Materials in Electronics, 2012, 23(9):1640-1646. [94] LIU S, MA L, SHU Y, et al. Effects of POSS-silanol addition on whisker formation in Sn-based Pb-free electronic solders[J]. Journal of Electronic Materials, 2014, 43(1):26-32. [95] 邰枫, 郭福, 刘彬, 等. 新型纳米结构颗粒增强无铅复合钎料性能[J]. 复合材料学报, 2010, 27(1):144-149. TAI Feng, GUO Fu, LIU Bin, et al. Properties of new nano-structured particles reinforced lead-free composite solders[J]. Acta Materiae Compositae Sinica, 2010, 27(1):144-149. [96] HU Y, MA L, GUO F. Influence of nano-particles on creep behaviors of Cu/Sn-0.3Ag-0.7Cu-xPOSS/Cu composite solder joints[C]//201617th International Conference on Electronic Packaging Technology (ICEPT), August 16-19, 2016, Wuhan, China. IEEE, 2016:142-146. [97] WANG J J, WEI X C, Zhu W Q, et al. Study on low silver Sn-Ag-Cu-P alloy for wave soldering[C]//IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits. IEEE, 2013:485-489. [98] 栗慧, 卢斌, 朱华伟. 微量磷元素对低银系无铅钎料抗氧化性能的影响[J]. 热加工工艺, 2012, 41(7):143-145. LI Hui, LU Bin, ZHU Huawei. Effect of P on oxidation resistance of low-silver lead-free solder[J]. Hot Working Technology, 2012, 41(7):143-145. |
[1] | KONG Ling, WANG Yuhui, Yang Haokun, PENG Yan. Research Situation of Service Performance of Fe-Mn-Al-C Austenitic Low Density Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 34-47. |
[2] | REN Zhiying, HUANG Zihao, FANG Rongzheng, WANG Qinwei, MO Jiliang, Qin Hongling. Study on Thermomechanical Properties of Metal-rubber Disordered Lattice Interpenetrating Structures [J]. Journal of Mechanical Engineering, 2024, 60(8): 165-175. |
[3] | CHEN Wei, ZHAO Jie, ZHU Libin, CAO Haibo. Research Progress on Additive Manufacturing of Low Activation Steels [J]. Journal of Mechanical Engineering, 2024, 60(7): 312-333. |
[4] | ZHENG Yang, ZHAO Zihao, LIU Wei, YU Zhengzhe, NIU Wei, LEI Yiwen, SUN Ronglu. Research Progress in High-performance Mg Alloys Prepared by Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(7): 385-400. |
[5] | SONG Boxue, WANG Zisheng, CHEN Keqiang, JIANG Xingyu, YU Tianbiao, LIU Weijun, YANG Guozhe. Effect of Melting and Solidification Behavior and Dendrite Morphology of DED Melt Pool on Tensile Strength [J]. Journal of Mechanical Engineering, 2024, 60(7): 411-424. |
[6] | BAO Xinyu, MA Yonglin, CHENG Qiao, SU Yihui, WANG Jie, XING Shuqing. Effect of the Pulsed Magnetic Melt Treatment on Solidification Structure and Mechanics Performance of the Direct-chilling Casting Al-Si-Mg-Cu-Ni Alloy [J]. Journal of Mechanical Engineering, 2024, 60(6): 279-286. |
[7] | ZHOU Tian, CAI Lixun, HAN Guangzhao. Novel Flat-SPT Method for Obtaining Mechanical Properties of Ductile Materials and Its Application [J]. Journal of Mechanical Engineering, 2024, 60(4): 316-325. |
[8] | GAO Qiang, WANG Jian, ZHANG Yan, ZHENG Xuyang, LÜ Hao, YIN Guodong. Topology Optimization Approaches and Its Application and Prospect in Transportation Engineering [J]. Journal of Mechanical Engineering, 2024, 60(4): 369-390. |
[9] | TANG Jiuxing, SHI Lei, WU Chuansong, WU Mingxiao, GAO Song. Microstructure and Mechanical Properties of Double-side Friction Stir Welding Joint of Medium-thick Al/Cu Dissimilar Plate [J]. Journal of Mechanical Engineering, 2024, 60(20): 88-98. |
[10] | HUANG Hao, SHAN Zhongde, ZHANG Lijiao, SUN Zheng, GUO Zitong, LIU Jianhua, JIN Peng. Research on Forming and Mechanical Properties Prediction Method of Special-section Composite Component [J]. Journal of Mechanical Engineering, 2024, 60(2): 107-118. |
[11] | GAO Kai, GU Hongli, LI Kun. Cr, Si Trace Elements on Steel/Aluminium Induction Hydrostatic Welding Joint Organization and Properties of the Impact [J]. Journal of Mechanical Engineering, 2024, 60(2): 178-187. |
[12] | MA Xiangyu, ZHENG Xunjia, HE Zao. Mapping Relationship for the Performance of Porous Structures Based on the Principle of Least Action [J]. Journal of Mechanical Engineering, 2024, 60(19): 250-260. |
[13] | LIU Wei, HU Lifang, ZHENG Zhi, GAO Wei, CHOU Zhao, CHENG Xiao, WANG Yong. Study on the Anodic Bonding Mechanism and Mechanical Properties of Glass and Silicon Carbide [J]. Journal of Mechanical Engineering, 2024, 60(16): 151-159. |
[14] | LIU Mingliang, TANG Qi, TIAN Xiaoyong, LIU Tengfei, QIN Yingjie, LI Dichen. Study on the 3D Printing Process and Axial Compression Performance of Reinforced Cylindrical Shell [J]. Journal of Mechanical Engineering, 2024, 60(15): 283-290. |
[15] | YANG Xiawei, MENG Tingxi, CHU Qiang, FAN Wenlong, SU Yu, MA Tiejun, LI Wenya. Research Progress in Double-sided Friction Stir Welding of Aluminum Alloy [J]. Journal of Mechanical Engineering, 2024, 60(14): 77-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||