[1] 凌三强,徐乐,付饶,等.基于稳健性设计原理的接触件插拔力质量一致性优化方法[J]. 机械工程学报,2017,53(4):190-197. LING Sanqiang,XU Le,FU Rao,et al.Optimization method of quality consistency for insertion force of electrical contact based on robust design principle[J].Journal of Mechanical Engineering,2017, 53(4):190-197. [2] 刘宇,李翔宇,张小虎. 考虑载荷动态分配机制的多状态系统可靠性建模及优化[J]. 机械工程学报,2016, 52(6):197-205. LIU Yu, LI Xiangyu, ZHANG Xiaohu. Multi-state system reliability modeling and optimization with considering dynamic load distribution mechanism[J]. Journal of Mechanical Engineering,2016,52(6):197-205. [3] ELLIS A,ISKANDAR R,SCHMID C,et al. Active learning for efficiently training emulators of computationally expensive mathematical models[J]. Stats in Medicine,2020,39(25):3521-3548. [4] FORRESTER A,KEANE A,et al. Multi-fidelity optimization via surrogate modelling[J]. Proceedings of the Royal Society a Mathematical,2007,463(2088):3251-3269. [5] PARUSSINI L,VENTURI D,PERDIKARIS P,et al. Multi-fidelity Gaussian process regression for prediction of random fields[J]. Journal of Computational Physics, 2017,336:36-50. [6] LIU Y,CHEN S,WANG F,et al. Sequential optimization using multi-level cokriging and extended expected improvement criterion[J]. Structural and Multidisciplinary Optimization,2018,58(3):1155-1173. [7] SHI R,LONG T,BAOYIN H. Multi-fidelity and multi-objective optimization of low-thrust transfers with control strategy for all-electric geostationary satellites[J]. Acta Astronautica,2020,177:577-587. [8] HAN Z,GOERTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. Aiaa Journal, 2012,50(9):1885-1896. [9] HAN Z,XU C,ZHANG L,et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2020, 33(1):31-47. [10] NICOLAS,COURRIER,PIERRE-ALAIN,et al. Variable-fidelity modeling of structural analysis of assemblies[J]. Journal of Global Optimization,2016,64(3):577-613. [11] ZHOU Q,WANG Y,CHOI S,et al. A sequential multi-fidelity metamodeling approach for data regression[J]. Knowledge-Based Systems,2017,134(15):199-212. [12] WANG F,XIONG F,CHEN S,et al. Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling[J]. Structural and Multidisciplinary Optimization, 2019, 60(4):1583-1604. [13] 韩忠华,许晨舟,乔建领,等.基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报,2020,41(5):30-70. HAN Zhonghua,XU Chenzhou,QIAO Jianling,et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica,2020,41(5):30-70. [14] 张浩,吴秀娟. 深度学习的内涵及认知理论基础探析[J]. 中国电化教育,2012(10):7-11,21. ZHANG Hao,WU Xiujuan. An analysis on the connotation and cognitive theoretical basis of deep learning[J]. China Educational Technology,2012(10):7-11,21. [15] 陈海,钱炜祺,何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报,2018,36(2):294-299. CHEN Hai,QIAN Weiqi,HE Lei. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica,2018,36(2):294-299. [16] 范周伟,余雄庆,王朝等. 基于深度神经网络模型的客机总体主要设计参数敏感性分析[J]. 航空学报, 2021,42(4):524353. FAN Zhouwei,YU Xiongqing,WANG Chao,et al. Sensitivity analysis of main design parameters of passenger aircraft based on deep neural network model[J/OL]. Acta Aeronautica et Astronautica Sinica,2021,42(4):24353. [17] 廖鹏,姚磊江,白国栋,等. 基于深度学习的混合翼型前缘压力分布预测[J]. 航空动力学报,2019,34(8):1751-1758. LIAO Peng,YAO Leijiang,BAI Guodong,et al. Prediction of hybrid airfoil leading edge pressure distribution based on deep learning[J]. Journal of Aerospace Power,2019,34(8):1751-1758. [18] TAO J,SUN G. Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization[J]. Aerospace Science and Technology,2019,92:722-737. [19] LI Y,JIANG J,SHAO Y,et al. Fast Hyperparameter optimization of deep neural networks via ensembling Multiple Surrogates[J]. arXiv,2018:1811.02319. [20] ZHU G,ZHU R. Accelerating hyperparameter optimization of deep neural network via progressive multi-fidelity evaluation[R]. Nanjing:Advances in Knowledge Discovery and Data Mining,2020:752-763. [21] CANG R,HOPE Y,YI R. One-shot generation of near-optimal topology through theory-driven machine learning[J]. Computer-Aided Design,2018,109. [22] CONNOR S,TAGHI M. A survey on image data augmentation for deep learning[J]. Journal of Big Data,2019,6(1):1-48. [23] AUGUSTO D,AURORA P. On the use of fitness landscape features in meta-learning based algorithm selection for the quadratic assignment problem[J]. 2020, 805:62-75. [24] 闫雷鸣,严璐绮,王超智,等. 基于句式元学习的Twitter分类[J]. 北京大学学报,2019,55(1):98-104. YAN Leiming, YAN Luqi,WANG Chaozhi,et al. Sentence style meta learning for twitter classification[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(1):98-104. [25] 王璐,潘文林. 基于元学习的语音识别探究[J]. 云南民族大学学报,2019,28(5):510-516. WANG Lu,PAN Wenlin. Speech recognition based on meta-learning[J]. Journal of Yunnan University of Nationalities,2019,28(5):510-516. [26] FINN C,ABBEEL P,LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[J]. 2017,70:1126-1135. [27] PAN J,LIU C,WANG Z,et al. Investigation of deep neural networks (DNN) for large vocabulary continuous speech recognition:Why DNN surpasses GMMS in acoustic modeling[J]. IEEE,2012,7196(8):301-305. [28] XU Y,MA J,LIAW A,et al. Demystifying multi-task deep neural networks for quantitative structure-activity relationships[J]. Journal of Chemical Information & Modeling,2017,57(10):2490-2504. [29] 孙文珺,邵思羽,严如强.基于稀疏自动编码深度神经网络的感应电动机故障诊断[J]. 机械工程学报,2016,52(9):65-71. SUN Wenjun,SHAO Siyu,YAN Ruqiang. Induction motor fault diagnosis based on deep neural network of sparse auto-encoder[J]. Journal of Mechanical Engineering,2016,52(9):65-71. [30] YAN L,ZHOU T. An adaptive surrogate modeling based on deep neural networks for large-scale Bayesian inverse problems[J]. arXiv,2019:1911.08926. [31] XIONG F,XIONG Y,CHEN W. Optimizing Latin hypercube design for sequential sampling of computer experiments[J]. Engineering Optimization,2009,41(8):793-810. |