[1] 蔡雪,张彩萍,张琳静,等. 基于等效电路模型的锂离子电池峰值功率估计的对比研究[J]. 机械工程学报, 2021, 57(14):64-76. CAI Xue, ZHANG Caiping, ZHANG Linjing, et al. Comparative study on state of power estimation of lithium-ion battery based on equivalent circuit model[J]. Journal of Mechanical Engineering, 2021, 57(14):64-76. [2] 朱晓庆,王震坡, WANG Hsin,等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14):91-118. ZHUXiaoqing, WANG Zhenpo, WANG Hsin, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J].Journal of Mechanical Engineering, 2020, 56(14):91-118. [3] 熊瑞,马骕骁,陈泽宇,等. 锂离子电池极速自加热中的电-热耦合特性及建模[J]. 机械工程学报, 2021, 57(2):179-189. XIONG Rui, MA Suxiao, CHEN Zeyu, et al. Electrochemical thermal coupling characteristics and modeling for lithium-ion battery operating with extremely self-fast heating[J]. Journal of Mechanical Engineering, 2021, 57(2):179-189. [4] 张亚军,王贺武,冯旭宁,等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20):17-27. ZHANG Yajun, WANG Hewu, FENG Xuning, et al. Research progress on thermal runaway combustion characteristics of power lithium-ion batteries[J]. Journal of Mechanical Engineering, 2019, 55(20):17-27. [5] HUO Yutao, RAO Zhonghao, LIU Xinjian, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89:387-395. [6] LI Xinxi, ZHOU Dequan, ZHANG Guoqing, et al. Experimental investigation of the thermal performance of silicon cold plate for battery thermal management system[J]. Applied Thermal Engineering, 2019, 155:331-340. [7] 胡晓松,唐小林. 电动车辆锂离子动力电池建模方法综述[J]. 机械工程学报, 2017, 53(16):20-31. HU Xiaosong, TANG Xiaolin. Review of modeling techniques for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2017, 53(16):20-31. [8] 黄鑫,冯旭宁,韩雪冰,等. 车用并联电池组不均衡电流建模与仿真分析[J]. 机械工程学报, 2019, 55(20):44-51. HUANG Xin, FENG Xuning, HAN Xuebing, et al. Study on modelling and analysis of imbalanced current inside parallel-connected lithium-ion batteries for electric vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20):44-51. [9] DENG Tao, RAN Yan, YIN Yanli, et al. Multi-objective optimization design of thermal management system for lithium-ion battery pack based on non-dominated sorting genetic algorithm II[J]. Applied Thermal Engineering, 2020, 164:114394. [10] WANG Ningbo, LI Congbo, LI Wei, et al. Heat dissipation optimization for a serpentine liquid cooling battery thermal management system:An application of surrogate assisted approach[J]. Journal of Energy Storage, 2021, 40:102771. [11] LI Congbo, LI Yongsheng, GAO Liang, et al. Surrogate model-based heat dissipation optimization of air-cooling battery packs involving herringbone fins[J]. International Journal of Energy Research, 2021, 45:8508-8523. [12] CHOUDHARI V G, DHOBLE A S, PANCHAL S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization[J]. International Journal of Heat and Mass Transfer, 2020, 163:120434. [13] XIE Yi, GUO Hongqing, LI Wei, et al. Improving battery thermal behavior and consistency by optimizing structure and working parameter[J]. Applied Thermal Engineering, 2021, 196:117281. [14] PATIL M S, SEO J H, PANCHAL S, et al. Investigation on thermal performance of water-cooled li-ion pouch cell and pack at high discharge rate with u-turn type micro-channel cold plate[J]. International Journal of Heat and Mass Transfer, 2020, 155:119728. [15] LI Congbo, LI Yongsheng, GAO Liang, et al. Surrogate model-based heat dissipation optimization of air-cooling battery packs involving herringbone fins[J]. International Journal of Energy Research, 2021, 45:8508-8523. [16] TANG Xingwang, GUO Qin, LI Ming, et al. Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning[J]. Journal of Power Sources, 2021, 494:229727. [17] FAN Yiwei, WANG Zhaohui, FU Ting. Multi-objective optimization design of lithium-ion battery liquid cooling plate with double-layered dendritic channels[J]. Applied Thermal Engineering, 2021, 199:117541. [18] AN Z, SHAH K, JIA L, et al. A parametric study for optimization of mini-channel based battery thermal management system[J]. Applied Thermal Engineering, 2019, 154:593-601. [19] CHENG Liu, GARG Akhil, JISHNU A K, et al. Surrogate based multi-objective design optimization of lithium-ion battery air-cooled system in electric vehicles[J]. Journal of Energy Storage, 2020, 31:101645. [20] SEVERINO B, GANA F, PALMA-BEHNKE R, et al. Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms[J]. Journal of Power Sources, 2014, 267:288-299. [21] QIAN Zhen, LI Ning, RAO Zhonghao. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energy Conversion and Management, 2016, 126:622-631. [22] MCKAY M, CONOVER W, BECKMAN R. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21:239-245. [23] 于仲安,陈可怡,张军令,等. 动力电池散热技术研究进展[J]. 电气工程学报, 2022, 17(4):145-162. YU Zhongan, CHEN Keyi, ZHANG Junling, et al. Research progress of power battery cooling technology[J]. Journal of Electrical Engineering, 2022, 17(4):145-162. [24] QIAN, Zhiguang, SEEPERSAD C C, JOSEPH V R, et al. Building surrogate models based on detailed and approximate simulations[J]. Journal of Mechanical Design, 2006, 128(4):668-677. [25] DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-II[B]. Lect. Notes Comput. Sci., 1917, 2000:849-858. [26] 刘家豪,马晴雯. 在浸入式冷却中添加新型翅片的混合电池热管理系统[J]. 电气工程学报, 2022, 17(4):113-121. LIU Jiahao, MA Qingwen. Hybrid battery thermal management system with new fins added to immersion cooling[J]. Journal of Electrical Engineering, 2022, 17(4):113-121. |