[1] SCHWEITZER G,MASLEN E H. Magnetic bearings:Theory,design,and application to rotating machinery[M]. Berlin-Springer,2009. [2] TANG J,LIU B,FANG J,ET AL. Suppression of vibration caused by residual unbalance of rotor for magnetically suspended flywheel[J]. Journal of Vibration and Control,2013,19(13):1962-1979. [3] KANG C,TSAO T C. Control of magnetic bearings for rotor unbalance with plug-in time-varying resonators[J]. Journal of Dynamic Systems,Measurement and Control, 2016,138(1):0110011-1100111. [4] ZENGER K,ALTOWATI A,TAMMI K,et al. Feedforward multiple harmonic control for periodic disturbance rejection[C]. 11th International Conference on Control,Automation,Robotics and Vision,2010,2010:305-310. [5] LIU C,LIU G. Autobalancing control for MSCMG based on sliding-mode observer and adaptive compensation[J]. IEEE Transactions on Industrial Electronics,2016,63(7):4346-4356. [6] 毛川,祝长生. 主动电磁轴承-刚性转子系统实时变步长迭代不平衡补偿[J]. 中国电机工程学报,2018, 38(13):3960-3968,4037. MAO Chuan,ZHU Changsheng. A real-time variable step size iterative unbalance compensation for active magnetic bearing-rigid rotor systems[J]. Proceedings of the Chinese Society of Electrical Engineering,2018, 38(13):3960-3968,4037. [7] MAO C,ZHU C S. Unbalance compensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm[J]. IEEE Transactions on Industrial Electronics,2018,65(5):4177-4186. [8] KUSEYRI I S. Robust control and unbalance compensation of rotor/active magnetic bearing systems[J]. Journal of Vibration and Control,2012,18(6):817-832. [9] CUI P,LI S,ZHAO G,et al. Suppression of harmonic current in active-passive magnetically suspended CMG using improved repetitive controller[J]. IEEE/ASME Transactions on Mechatronics,2016,21(4):2132-2141. [10] HE Y,SHI L,SHI Z,et al. Unbalance compensation of a full scale test rig designed for HTR-10GT:A frequency-domain approach based on iterative learning control[J]. Science and Technology of Nuclear Installations, 2017,2017(PT.1):6.1-6.15. [11] 王忠博,毛川,祝长生. 电磁轴承高速电机转子多频振动的电流补偿控制[J]. 中国电机工程学报,2018,38(1):275-284,365. WANG Zhongbo,MAO Chuan,ZHU Changsheng. Current compensation control of multiple frequency vibrations of the rotor in active magnetic bearing high speed motors[J]. Proceedings of the Chinese Society of Electrical Engineering,2018,38(1):275-284,365. [12] 王忠博,祝长生,陈亮亮. 基于不平衡系数辨识的电磁轴承-刚性飞轮转子系统不平衡补偿控制[J]. 中国电机工程学报,2018,38(12):3699-3708,30. WANG Zhongbo,ZHU Changsheng,CHEN Liangliang. Unbalance compensation control of active magnetic bearing-rigid flywheel rotor system based on unbalance coefficients identification[J]. Proceedings of the Chinese Society of Electrical Engineering,2018,38(12):3699-3708,30. [13] XU X,FANG J,LIU G,et al. Model development and harmonic current reduction in active magnetic bearing systems with rotor imbalance and sensor runout[J]. Journal of Vibration and Control,2015,21(13):2520-2535. [14] SUZUKI Y,MICHIMURA S,TAMURA A. Unbalance response attenuation of a flexible rotor suspended by magnetic bearings with open loop control[J]. JSME International Journal,Series C:Dynamics, Control,Robotics,Design and Manufacturing,1994,37(2):285-291. [15] CUI P,LI S,WANG Q,et al. Harmonic current suppression of an AMB rotor system at variable rotation speed based on multiple phase-shift notch filters[J]. IEEE Transactions on Industrial Electronics,2016,63(11):6962-6969. [16] CUI P,WANG Q,LI S,et al. Combined FIR and fractional-order repetitive control for harmonic current suppression of magnetically suspended rotor system[J]. IEEE Transactions on Industrial Electronics,2017,64(6):4828-4835. [17] PENG C,SUN J,SONG X,et al. Frequency-varying current harmonics for active magnetic bearing via multiple resonant controllers[J]. IEEE Transactions on Industrial Electronics,2017,64(1):517-526. [18] PENG C,SUN J,MIAO C,et al. A novel cross-feedback notch filter for synchronous vibration suppression of an MSFW with significant gyroscopic effects[J]. IEEE Transactions on Industrial Electronics,2017,64(9):7181-7190. [19] PENG C,ZHU M,WANG K,et al. A two-stage synchronous vibration control for magnetically suspended rotor system in the full speed range[J]. IEEE Transactions on Industrial Electronics,2020,67(1):480-489. [20] KANG M S,YOON W H. Acceleration feedforward control in active magnetic bearing system subject to base motion by filtered-X LMS algorithm[J]. IEEE Transactions on Control Systems Technology,2006,14(1):134-140. [21] SHI J,ZMOOD R,QIN L J. The direct method for adaptive feed-forward vibration control of magnetic bearing systems[C]. Proceedings of the 7th International Conference on Control,Automation,Robotics and Vision,December 2-5,2002,2002:675-680. [22] 高辉,徐龙祥. 基于LMS算法的磁悬浮轴承系统振动补偿[J]. 振动工程学报,2009,22(6):583-588. GAO Hui,XU Longxiang. Real-time vibration compensation for active magnetic bearing systems based on LMS algorithm[J]. Journal of Vibration Engineering,2009,22(6):583-588. [23] 宋腾,韩邦成,郑世强. 基于最小位移的磁悬浮转子变极性LMS反馈不平衡补偿[J]. 振动与冲击,2015,34(7):24-32. SONG Teng,HAN Bangcheng,ZHENG Shiqiang. Variable polarity LMS feedback based on displacement nulling to compensate unbalance of magnetic bearing[J]. Journal of Vibration and Shock,2015,34(7):24-32. [24] 周天豪,陈磊,祝长生. 基于自适应变步长最小均方算法的磁悬浮高速电机不平衡补偿[J]. 电工技术学报,2020,35(9):1900-1911. ZHOU Tianhao,CHEN Lei,ZHU Changsheng. Unbalance compensation for magnetically levitated high-speed motors based on adaptive variable step size least mean square algorithm[J]. Transactions of China Electrotechnical Society,2020,35(9):1900-1911. [25] TANG E,FANG J,HAN B. Active vibration control of the flexible rotor in high energy density magnetically suspended motor with mode separation method[J]. Journal of Engineering for Gas Turbines and Power,2015,137(8):082503. |