Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (15): 1-14.doi: 10.3901/JME.2021.15.001
CAI Shibo1,2, TAO Zhicheng1,2, WAN Weiwei3, YU Haoyong4, BAO Guanjun1,2
Received:
2020-10-28
Revised:
2021-02-04
Online:
2021-08-05
Published:
2021-11-03
CLC Number:
CAI Shibo, TAO Zhicheng, WAN Weiwei, YU Haoyong, BAO Guanjun. Multi-fingered Dexterous Hands: From Simplicity to Complexity and Simplifying Complex Applications[J]. Journal of Mechanical Engineering, 2021, 57(15): 1-14.
[1] 刘辛军, 于靖军, 王国彪, 等. 机器人研究进展与科学挑战[J]. 中国科学基金, 2016, 30(5):425-431. LIU Xinjun, YU Jingjun, WANG Guobiao, et al. Research trend and scientific challenges of robotics[J]. China Science Foundation, 2016, 30(5):425-431. [2] DING Han, YANG Xuejun, ZHENG Nanning, et al. Tri-co robot:A Chinese robotic research initiative for enhanced robot interaction capabilities[J]. National Science Review, 2018, 5(6):799-801. [3] PIAZZA C, GRIOLI G, CATALANO M G, et al. A century of robotic hands[J]. Annual Review of Control Robotics and Autonomous Systems, 2019, 2(1):1-32. [4] 张进华, 王韬, 洪军, 等. 软体机械手研究综述[J]. 机械工程学报, 2017, 53(13):19-28. ZHANG Jinhua, WANG Tao, HONG Jun, et al. Review of soft-bodied manipulator[J]. Journal of mechanical engineering, 2017, 53(13):19-28. [5] 宗光华, 刘海波, 程君实. 机器人技术手册[M]. 北京:科学出版社, 1996. ZONG Guanghua, LIU Haibo, CHENG Junshi. Robotics manual[M]. Beijing:Science Press, 1996. [6] NIE K, WAN W, HARADA K. A hand combining two simple grippers to pick up and arrange objects for assembly[J]. IEEE Robotics and Automation Letters, 2019, 4(2):958-965. [7] HASAN M R, VEPA R J, SHAHEED H, et al. Modelling and control of the Barrett hand for grasping[C]//UKSim-Amss 15th International Conference on Computer Modelling and Simulation, Cambridge, UK, IEEE, 2013:230-235. [8] SUAREZ-RUIZ F, GALIANA I, TENZER Y, et al. Grasp mapping between a 3-finger haptic device and a robotic hand[C]//9th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Berlin, Heidelberg, Springer, 2014, 8618:275-283. [9] SUZUMORI K, IIKURA S, TANAKA H. Applying a flexible microactuator to robotic mechanisms[J]. IEEE Control Systems Magazine, 1992, 12(1):21-27. [10] 鲍官军, 张水波, 陈亮, 等. 基于气动柔性驱动器的球果采摘末端抓持器[J]. 农业机械学报, 2013, 44(5):242-246. BAO Guanjun, ZHANG Shuibo, CHEN Liang, et al. Design of spherical fruit end-grasper based on FPA[J]. Journal of Agricultural Machinery, 2013, 44(5):242-246. [11] BAO Guanjun, MA Xiaolong, LUO Xingyuan, et al. Full compliant continuum robotic finger and its kinematic model[J]. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 2014, 38(M2):389-402. [12] WANG Zhoukui, OR K, HIRAI S. A dual-mode soft gripper for food packaging[J]. Robotics and Autonomous Systems, 2020, 125:103427. [13] BAO Guanjun, FANG Hui, CHEN Lingfeng, et al. Soft robotics:Academic insights and perspectives through bibliometric analysis[J]. Soft Robotics, 2018, 5(3):229-241. [14] ZHAO Huichan, O'BRIEN K, LI Shuo, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J]. Science Robotics, 2016, 1(1):eaai7529. [15] TOKUJI O. Computer control of multijointed finger system for precise object-handling[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1982, 12(3):289-299. [16] MATTHEW T M, J.KENNETH S, JOEY K P. Robot hands and the mechanics of manipulation[J]. MIT Press:Journal of Dynamic Systems, Measurement, and Control, 1985. [17] JACOBSEN S C, WOOD J E, KNUTTI D F, et al. The UTAH/MIT dextrous hand:Work in progress[J]. The International Journal of Robotics Research, 1984, 3(4):21-50. [18] LOVCHIK C S, DIFTLER M A. The robonaut hand:A dexterous robot hand for space[C]//1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, IEEE, 1999:907-912. [19] HIRZINGER G, FISCHER M, BRUNNER B, et al. Advances in robotics:The DLR experience[J]. International Journal of Robotics Research, 1999, 18(11):1064-1087. [20] LIU Hong, Wu K, MEUSEL P, et al. Multisensory five-finger dexterous hand:The DLR/HIT Hand II[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, IEEE, 2008:3692-3697. [21] MOURI T, KAWASAKI H, YOSHIKAWA K, et al. Anthropomorphic robot hand:Gifu hand III[J]. JRSJ, 2002:1288-1293. [22] KAWASAKI H, KOMATSU T, UCHIYAMA K. Dexterous anthropomorphic robot hand with distributed tactile sensor:Gifu hand II[J]. IEEE-ASME Transactions on Mechatronics, 2002, 7(3):296-303. [23] SCHMITZ A, PATTACINI U, NORI F, et al. Design, realization and sensorization of the dexterous iCub hand[C]//IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, IEEE, 2010:186-191. [24] LI Miao, HANG Kaiyu, KRAGIC D, et al. Dexterous grasping under shape uncertainty[J]. Robotics and Autonomous Systems, 2016, 75:352-364. [25] BIRGLEN L, LALIBERTE T, GOSSELIN C M. Underactuated robotic hands[M]. Berlin Heidelberg:Springer, 2007. [26] YUN Y, AGARWAL P, FOX J, et al. Accurate torque control of finger joints with UT hand exoskeleton through Bowden cable SEA[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, South Korea, IEEE, 2016:390-397. [27] MITSUI K, OZAWA R, KOU T. An under-actuated robotic hand for multiple grasps[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, IEEE, 2013:5475-5480. [28] REN Zeyu, ZHOU Chengxu, XIN Songyan, et al. Heri hand:A quasi dexterous and powerful hand with asymmetrical finger dimensions and under actuation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, IEEE, 2017:322-328. [29] CARROZZA M C, SUPPO C, SEBASTIANI F, et al. The SPRING hand:Development of a self-adaptive prosthesis for restoring natural grasping[J]. Autonomous Robots, 2004, 16(2):125-141. [30] WANG Long, DELPRETO J, BHATTACHARYYA S, et al. A highly-underactuated robotic hand with force and joint angle sensors[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, IEEE, 2011:1380-1385. [31] WISTE T, GOLDFARB M. Design of a simplified compliant anthropomorphic robot hand[J]. 2017 IEEE International Conference on Robotics and Automation, 2017(1):3433-3438. [32] DOLLAR A M, HOWE R D. The highly adaptive SDM hand:Design and performance evaluation[J]. International Journal of Robotics Research, 2010, 29(5):585-597. [33] RENDA F, GIORELLI M, CALISTI M, et al. Dynamic model of a multibending soft robot arm driven by cables[J]. IEEE Transactions on Robotics, 2014, 30(5):1109-1122. [34] CATALANO M G, GRIOLI G, FARNIOLI E, et al. Adaptive synergies for the design and control of the Pisa/IIT SoftHand[J]. The International Journal of Robotics Research, 2014, 33(5):768-782. [35] ZHANG Hongying, KUMAR A S, FUH J Y H, et al. Topology optimized design, fabrication and evaluation of a multimaterial soft gripper[C]//2018 IEEE International Conference on Soft Robotics, Livorno, Italy, IEEE, 2018:424-430. [36] ZHANG Hongying, KUMAR A S, FUH J Y H, et al. Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation, and artificial hands[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(1):120-131. [37] DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2016, 35(1-3):161-185. [38] CUI Lei, SUN Jie, DAI J S. In-hand forward and inverse kinematics with rolling contact[J]. Robotica, 2017, 35(12):2381-2399. [39] YUAN Shenli, EPPS A D, NOWAK J B, et al. Design of a roller-based dexterous hand for object grasping and within-hand manipulation[C]//2020 IEEE International Conference on Robotics and Automation, Paris, France, IEEE, 2020:8870-8876. [40] MCCANN C M, DOLLAR A M. Design of a stewart platform-inspired dexterous hand for 6-DOF within-hand manipulation[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, IEEE, 2017:1158-1163. [41] HASEGAWA S, WADA K, NIITANI Y, et al. A three-fingered hand with a suction gripping system for picking various objects in cluttered narrow space[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, IEEE, 2017:1164-1171. [42] GOVINDAN N, KOVVALI S S V, CHANDRASEKARAN K, et al. GraspMan-a novel robotic platform with grasping, manipulation, and multimodal locomotion capability[C]//2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, IEEE, 2018:7354-7359. [43] PEDRO P, ANANDA C, RAFAEL P B, et al. Closed structure soft robotic gripper[C]//2018 IEEE International Conference on Soft Robotics, Livorno, Italy, IEEE, 2018:66-70. [44] 何平, 金明河, 刘宏, 等. 机器人多指灵巧手基关节力矩/位置控制系统的研究[J]. 机器人, 2002, 24(4):314-318. HE Ping, JIN Minghe, LIU Hong, et al. Study of position and torque feedback control system of multi-fingered dexterous robot hand[J]. Robotics, 2002, 24(4):314-318. [45] 尚喜生, 郭卫东, 张浩, 等. BH-4灵巧手抓持规划与实现[C]//"面向新世纪中国机器人产业化发展论坛"大会, 青岛, 2000:196-200. SHANG Xisheng, GUO Weidong, ZHANG Hao, et al. Planning and realization of BH-4 dexterous hand grip[C]//Conference on "China robot industrialization development forum for the new century", Qingdao, 2000:196-200. [46] 王国庆, 张启先, 李大寨, 等. 基于抓持稳定度的多指灵巧手抓持控制[J]. 航空学报, 1997(3):294-298. WANG Guoqing, ZHANG Qixian, LI Dazhai, et al. Grasping control of the dexterous hand based on the degress of stability of grasping[J]. Acta Aeronautica Sinica, 1997(3):294-298. [47] 王志恒, 钱少明, 杨庆华, 等. 气动机器人多指灵巧手——ZJUT Hand[J]. 机器人, 2012, 34(2):223-230. WANG Zhiheng, QIAN Shaoming, YANG Qinghua, et al. Multi fingered dexterous pneumatic robot hand[J]. Robotics, 2012, 34(2):223-230. [48] WANG Zhiheng, ZHANG Libin, BAO Guanjun, et al. Pneumatic robot multi-fingered dexterous hand-ZJUT hand[J]. Journal of Central South University, 2011, 18(4):1105-1114. [49] ZHU Liyao, WANG Wenbiao, TAO Zhicheng, et al. Full-drive decoupled bionic finger:Structure and experimental trials[C]//2019 IEEE International Conference on Robotics and Biomimetics, Dali, China, IEEE, 2019:497-502. [50] LI Shuang, MA Xiaojian, LIANG Hongzhuo, et al. Vision-based teleoperation of shadow dexterous hand using end-to-end deep neural network[C]//2019 International Conference on Robotics and Automation, Montreal, Canada, IEEE, 2019:416-422. [51] ARMSTRONGHELOUVRY B, DUPONT P, DEWIT C C. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994, 30(7):1083-1138. [52] Cerulo I, Ficuciello F, Lippiello V, et al. Teleoperation of the SCHUNK S5FH under-actuated anthropomorphic hand using human hand motion tracking[J]. Robotics and Autonomous Systems, 2017, 89:75-84. [53] Kim Y, Yoon J, Sim Y. Fluid lubricated dexterous finger mechanism for human-like impact absorbing capability[J]. IEEE Robotics and Automation Letters, 2019, 4(4):3971-3978. [54] KURUMAYA S, NABAE H, ENDO G, et al. Design of thin McKibben muscle and multifilament structure[J]. Sensors and Actuators A-Physical, 2017, 261:66-74. [55] LEE D H, PARK J H, PARK S W, et al. KITECH-Hand:A highly dexterous and modularized robotic hand[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2):876-887. [56] VAN DER NIET OTR O, REINDERS-MESSELINK H A, BONGERS R M, et al. The i-LIMB hand and the DMC plus hand compared:A case report[J]. Prosthetics and Orthotics International, 2010, 34(2):216-220. [57] MELCHIORRI C, PALLI G, BERSELLI G, et al. Development of the UB Hand IV:Overview of design solutions and enabling technologies[J]. IEEE Robotics and Automation Magazine, 2013, 20(3):72-81. [58] ZHAO Huichan, O'BRIEN K, LI Shuo, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J]. Science Robotics, 2016, 1(1):eaai7529. [59] SHE Yu, CHEN Ji, SHI Hongliang, et al. Modeling and validation of a novel bending actuator for soft robotics applications[J]. Soft Robotics, 2016, 3(2):71-81. [60] TERRYN S, BRANCART J, LEFEBER D, et al. Self-healing soft pneumatic robots[J]. Science Robotics, 2017, 2(9):eaan4268. [61] ZHOU Jianshu, CHEN Xiaojiao, LI Jing, et al. A soft robotic approach to robust and dexterous grasping[C]//2018 IEEE International Conference on Soft Robotics, Livorno, Italy, IEEE, 2018:412-417. [62] LIU Yuan, JIANG Li, FAN Shaowei, et al. A novel actuation configuration of robotic hand and the mechanical implementation via postural synergies[C]//2017 IEEE International Conference on Robotics and Automation, Singapore, IEEE, 2017:2215-2222. [63] MARTENS M, BOBLAN I. Modeling the static force of a Festo pneumatic muscle actuator:A new approach and a comparison to existing models[J]. Actuators, 2017, 6(4):33. [64] MA R R, ROJAS N, DOLLAR A M. Spherical hands:Toward underactuated, in-hand manipulation invariant to object size and grasp location[J]. Journal of Mechanisms and Robotics-Transaction of the Same, 2016, 8(6):061021. [65] SCHALER E W, RUFFATTO D I, GLICK P, et al. An electrostatic gripper for flexible objects[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, IEEE, 2017:1172-1179. [66] YUAN Shenli, SHAO Lin, YAKO C L, et al. Design and control of roller grasper V2 for in-hand manipulation[J]. ArXiv, 2020(4):1. [67] KIM Y J, YOON J, SIM Y W. Fluid lubricated dexterous finger mechanism for human-like impact absorbing capability[J]. IEEE Robotics and Automation Letters, 2019, 4(4):3971-3978. [68] FAUDZI A A M, OOGA J, GOTO T, et al. Index finger of a human-like robotic hand using thin soft muscles[J]. IEEE Robotics and Automation Letters, 2018, 3(1):92-99. [69] VANDERBORGHT B, ALBU-SCHAEFFER A, BICCHI A, et al. Variable impedance actuators:A review[J]. Robotics and Autonomous Systems, 2013, 61(12):1601-1614. [70] KO T, KAMINAGA H, NAKAMURA Y. Underactuated four-fingered hand with five electro hydrostatic actuators in cluster[C]//2017 IEEE International Conference on Robotics and Automation, Singapore, IEEE, 2017:620-625. [71] PYLATIUK C, SCHULZ S, KARGOV A, et al. Two multiarticulated hydraulic hand prostheses[J]. Artificial Organs, 2004, 28(11):980-986. [72] ZHANG Jun, SHENG Jun, O'NEILL C T, et al. Robotic artificial muscles:Current progress and future perspectives[J]. IEEE Transactions on Robotics, 2019, 35(3):761-781. [73] 鲍官军, 张亚琪, 许宗贵, 等. 软体机器人气压驱动结构研究综述[J]. 高技术通讯, 2019, 29(5):467-479. BAO Guanjun, ZHANG Yaqi, XU Zonggui, et al. Review on pneumatic-driven structure for soft robot[J]. High Tech-communication, 2019, 29(5):467-479. [74] 南卓江, 杨扬, 铃森康一, 等. 基于细径McKibben型气动人工肌肉的仿生手研发[J]. 机器人, 2018, 40(3):321-328. NAN Zhuojiang, YANG Yang, KENICHI S, et al. Development of a bionic hand actuated by thin McKibben pneumatic artificial muscle[J]. Robot, 2018, 40(3):321-328. [75] GU Guoying, ZHU Jian, ZHU Limin, et al. A survey on dielectric elastomer actuators for soft robots[J]. Bioinspiration and Biomimetics, 2017, 12(1):011003. [76] MOHDLSA W, HUNT A, HOSSEINNIA S H. Sensing and self-sensing actuation methods for ionic polymer-metal composite (IPMC):A review[J]. Sensors, 2019, 19(18):3967. [77] KASHEF S R, AMINI S, AKBARZADEH A. Robotic hand:A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria[J]. Mechanism and Machine Theory, 2020, 145:103677. [78] PALLI G, NATALE C, MAY C, et al. Modeling and control of the twisted string actuation system[J]. IEEE-ASME Transactions on Mechatronics, 2013, 18(2):664-673. [79] WU Lianjun, DE ANDRADE M J, SAHARAN L K, et al. Compact and low-cost humanoid hand powered by nylon artificial muscles[J]. Bioinspiration and biomimetics, 2017, 12(2):026004. [80] TANG Xintian, LI Kai, LIU Yingxiang, et al. A general soft robot module driven by twisted and coiled actuators[J]. Smart Materials and Structures, 2019, 28(3):035019. [81] PALLI G, HOSSEINI M, MELCHIORRI C. Twisted string actuation with sliding surfaces[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Korea, IEEE, 2016:260-265. [82] YOUSEF H, BOUKALLEL M, ALTHOEFER K. Tactile sensing for dexterous in-hand manipulation in robotics-A review[J]. Sensors and Actuators A-Physical, 2011, 167(2):171-187. [83] KAPPASSOV Z, CORRALES J A, PERDEREAU V. Tactile sensing in dexterous robot hands-Review[J]. Robotics and Autonomous Systems, 2015, 74:195-220. [84] YANG Junchang, MUN J, KWON S Y, et al. Electronic skin:Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics[J]. Advanced Materials, 2019, 31(48):1904765. [85] LI Shuo, BAI Hedan, SHEPHERD R F, et al. Bio-inspired design and additive manufacturing of soft materials, machines, robots, and haptic interfaces[J]. Angewandte Chemie-International Edition, 2019, 58(33):11182-11204. [86] YAMAGUCHI T, KASHIWAGI T, AIRE T, et al. Human-like electronic skin-integrated soft robotic hand[J]. Advanced Intelligent Systems, 2019, 1(2):1900018. [87] LI Tiefeng, LI Guorui, LIANG Yiming, et al. Fast-moving soft electronic fish[J]. Science Advances, 2017, 3(4):e1602045. [88] WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617):451-455. [89] MIRVAKILI S M, SIM D, HUNTER I W, et al. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions[J]. Science Robotics, 2020, 5(41):eaaz4239. [90] BERSELLI G, PICCININI M, VASSURA G. Comparative evaluation of the selective compliance in elastic joints for robotic structures[C]//2011 IEEE International Conference on Robotics and Automation, Shanghai, China, IEEE, 2011:4626-4631. [91] GRUBER S. Robot hands and the mechanics of manipulation[J]. IEEE, 1987, 75(8):1134-1134. [92] LIAROKAPIS M, DOLLAR A M. Deriving dexterous, in-hand manipulation primitives for adaptive robot hands[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, IEEE, 2017:1951-1958. [93] 张玉茹, 李继婷, 李剑锋. 机器人灵巧手:建模, 规划与仿真[M]. 北京:机械工业出版社, 2007. ZHANG Yuru, LI Jiting, LI Jianfeng. Robot dexterous hands:Modeling, planning and simulation[M]. Beijing:China Machine Press, 2007. [94] DONG Huixu, ASADI E, QIU Chen, et al. Geometric design optimization of an under-actuated tendon-driven robotic gripper[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50:80-89. [95] NUZZI C, PASINETTI S, LANCINI M, et al. Deep learning-based hand gesture recognition for collaborative robots[J]. IEEE Instrumentation and Measurement Magazine, 2019, 22(2):44-51. [96] CHAO Ya, CHEN Xingchen, XIAO Nanfeng. Deep learning-based grasp-detection method for a five-fingered industrial robot hand[J]. IET Computer Vision, 2019, 13(1):61-70. [97] ANDRYCHOWICZ M, BAKER B, CHOCIEJ M, et al. Learning dexterous in-hand manipulation[J]. The International Journal of Robotics Research, 2020, 39(1):3-20. [98] LI Zhixiong, ZHANG Ziyang, SHI Junchuan, et al. Prediction of surface roughness in extrusion-based additive manufacturing with machine learning[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57:488-495. [99] OZAWA R, TAHARA K. Grasp and dexterous manipulation of multi-fingered robotic hands:A review from a control view point[J]. Advanced Robotics, 2017, 31(19-20):1030-1050. [100] SMIT G, PLETTENBURG D H, VAN DER HELM F C T, et al. The lightweight Delft Cylinder Hand:First multi-articulating hand that meets the basic user requirements[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(3):431-440. [101] WU F Y, ASADA H H. "Hold-and-manipulate" with a single hand being assisted by wearable extra fingers[C]//2015 IEEE International Conference on Robotics and Automation, Seattle, Washington, IEEE, 2015:6205-6212. |
[1] | ZHOU Suxia, BA Xinyue, WANG Junyan, LI Guang, QU Zhi. Research on Heat Dissipation of Bionic Brake Disc of Ginkgo Leaf Veins for High-speed Trains [J]. Journal of Mechanical Engineering, 2024, 60(6): 354-362. |
[2] | WANG Binkai, CHANG Bo, ZHANG Heng. Capillary Force Based Micromanipulation of Chips [J]. Journal of Mechanical Engineering, 2023, 59(6): 285-294,308. |
[3] | ZHOU Jianfei, GUO Ziqi, XU Shucai, SONG Jiafeng, ZOU Meng. Bio-lightweight and High Strength Structures and Their Bionic Applications in Energy Absorption Structures [J]. Journal of Mechanical Engineering, 2023, 59(4): 80-95. |
[4] | ZHANG Xianmin, ZHU Benliang, LI Hai, CHEN Zhong, WANG Rixin, ZANG Haoyan. Recent Advances in Compliant Precision Positioning and Manipulating Mechanisms [J]. Journal of Mechanical Engineering, 2023, 59(19): 24-43. |
[5] | ZHAO Cong, ZHU Yi, ZHANG Chao, CONG Xuemei, ZHANG Jin, HE Bing, YANG Huayong. Using Bionics to Optimize Hydraulic Manifold Blocks Based on Additive Manufacturing [J]. Journal of Mechanical Engineering, 2021, 57(24): 139-146. |
[6] | CHEN Gang, GU Aibo, WANG Liangmo, LI Xu, ZHANG Weigong. Coordination Control Method of Longitudinal and Lateral Manipulation for Driving Robot [J]. Journal of Mechanical Engineering, 2021, 57(11): 165-176. |
[7] | DAI Dali, XIAO Xinbiao, CHEN Hui, YAO Dan, JIN Xuesong. Study on the Optimization Method of Biomimetic Venation Based on Sound Power Sensitivity [J]. Journal of Mechanical Engineering, 2021, 57(1): 138-147. |
[8] | YAN Jihong, SHI Peipei, ZHANG Xinbin, ZHAO Jie. Review of Biomimetic Mechanism, Actuation, Modeling and Control in Soft Manipulators [J]. Journal of Mechanical Engineering, 2018, 54(15): 1-14. |
[9] | LI Dawei, DAI Ning, JIANG Xiaotong, ZHANG Yue, CHENG Xiaosheng. 3D Parametric Modeling Technique of Bionic Sharkskin Denticle [J]. Journal of Mechanical Engineering, 2016, 52(23): 182-188. |
[10] | ZHANG Qin, XU Chenying, HUANG Weijun, AOYAMA Hisayuki. Microfluidic-based Tapping and Displacement of Micro ParticlesMicrofluidic-based Tapping and Displacement of Micro Particles [J]. Journal of Mechanical Engineering, 2015, 51(14): 199-205. |
[11] | Yukai Wang, Yuying Shi, Yang Xu, Robert D. Lorenz*. A Comparative Overview of Indirect Field Oriented Control (IFOC) and Deadbeat-Direct Torque and Flux Control (DB-DTFC) for AC Motor Drives [J]. Chinese Journal of Electrical Engineering, 2015, 1(1): 9-20. |
[12] | WANG Tianmiao;TAO Yong. Research Status and Industrialization Development Strategy of Chinese Industrial Robot [J]. , 2014, 50(9): 1-13. |
[13] | YANG Fei TAO Jianguo DENG Zongquan LI Jiajun. Folded-deployable Study of Six-wheeled Rover Multiple Constraints Quadrilateral Suspension Inspired by the Horse [J]. , 2014, 50(5): 1-9. |
[14] | SUN Wenjie;LI Gang. Multiobjective Optimization for the Forging Manipulator Based on the Comprehensive Manipulation Performance Indicesccccccccc [J]. , 2014, 50(17): 52-60. |
[15] | YUAN Shuai;LIU Lianqing;WANG Zhidong;WANG Zhiyu;HOU Jing. Implementation of Virtual Clap Based AFM Nanomanipulation Through Tip Positioning [J]. , 2014, 50(13): 142-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||