Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (19): 24-43.doi: 10.3901/JME.2023.19.024
Previous Articles Next Articles
ZHANG Xianmin, ZHU Benliang, LI Hai, CHEN Zhong, WANG Rixin, ZANG Haoyan
Received:
2023-04-25
Revised:
2023-08-30
Online:
2023-10-05
Published:
2023-12-11
CLC Number:
ZHANG Xianmin, ZHU Benliang, LI Hai, CHEN Zhong, WANG Rixin, ZANG Haoyan. Recent Advances in Compliant Precision Positioning and Manipulating Mechanisms[J]. Journal of Mechanical Engineering, 2023, 59(19): 24-43.
[1] HOWELL L L. Compliant mechanisms. In 21st century kinematics:The 2012 NSF Workshop[M]. Springer,2013 [2] LOBONTIU N. Compliant mechanisms:Design of flexure hinges[M]. Boca Raton:CRC press,2002. [3] ZHANG X,ZHU B. Topology optimization of compliant mechanisms[M]. London:Springer London,2018. [4] PAROS J M,WEISBORO L. How to design flexure hinges[J]. Machine Design,1965,37:151-157. [5] MIDHA A. A compliance number concept for compliant mechanisms,and type synthesis[J]. Journal of Mechanisms Transmissions and Automation in Design,1987,109:348-355. [6] WANG H,ZHANG X. Input coupling analysis and optimal design of a 3-DOF compliant micro-positioning stage[J]. Mechanism and Machine Theory,2008,43(4):400-410. [7] SARDAN S O,EICHHORN V,PETERSEN D,et al. Rapid prototyping of nanotube-based devices using topology-optimized microgrippers[J]. Nanotechnology,2008,19:495503. [8] HOWELL L L. Compliant mechanisms[M]. New York:Wiley,2001. [9] 勾燕洁,张守银,陈贵敏. 一种全柔顺六稳态机构的设计[J]. 机械工程学报,2015,51(7):61-66. GOU Yanjie,ZHANG Shouyin,CHEN Guimin. Design approach for a fully compliant sexastable mechanism[J]. Journal of Mechanical Engineering,2015,51(7):61-66. [10] ZHANG C,YU H,YANG M,et al. Nonlinear stiffness and kinetostatic modeling of a large-range 3-degree-of-freedom planar compliant parallel mechanism[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2022,236(7):3672-3682. [11] HOPKINS J B,CULPEPPER M L. Synthesis of multi-degree of freedom,parallel flexure system concepts via freedom and constraint topology (FACT)-Part I:Principles[J]. Precision Engineering,2010,34(2),259-270. [12] TURKKAN O A,VENKITESWARAN V K,SU H J. Rapid conceptual design and analysis of spatial flexure mechanisms[J]. Mechanism and Machine Theory,2018,121650-668. [13] 李守忠,于靖军,宗光华. 基于旋量理论的并联柔性机构构型综合与主自由度分析[J]. 机械工程学报,2010,46(13):54-60. LI Shouzhong,YU Jingjun,ZONG Guanghua. Type synthesis and principal freedom analysis of parallel flexure mechanisms based on screw theory[J]. Journal of Mechanical Engineering,2010,46(13):54-60. [14] JIN M,ZHANG X. A new topology optimization method for planar compliant parallel mechanisms[J]. Mechanism and Machine Theory,2016,95:42-58. [15] CHEN Z,SHI J,LI Z,et al. A damped decoupled XY nanopositioning stage embedding graded local resonators[J]. IEEE/ASME Transactions on Mechatronics,2022,27(1):256-267. [16] LI Y,XIAO S,XI L,et al. Design,modeling,control and experiment for a 2-DOF compliant micro-motion stage[J]. International Journal of Precision Engineering And Manufacturing,2014,15(4):735-744. [17] ZHOU A,ZHANG X,LIU M. A new kind of multi-notched flexure hinges based 3-RRR micro-positioning stage[C]//Advances in Mechanism and Machine Science:Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science 15. Springer International Publishing,2019:1589-1598. [18] WANG R,ZHANG X. Parameters optimization and experiment of a planar parallel 3-DOF nanopositioning system[J]. IEEE Transactions on Industrial Electronics,2018,65(3):2388-2397. [19] 王保兴,孟刚,林苗,等. 3-PPP型柔性并联微定位平台的设计与分析[J]. 北京航空航天大学学报,2020,46(4):798-807. WANG Baoxing,MENG Gang,LIN Miao,et al. Design and analysis of a 3-PPP compliant parallel micro-positioning stage[J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(4):798-807 [20] LIN J,QI C,GAO F,et al. Modeling and verification for a three-degree-of-freedom flexure-based planar parallel micro manipulator[J]. Journal of Mechanisms and Robotics,2023,15(4):041006. [21] QI C,LIN J,LIU X,et al. A Modeling method for a 6-SPS perpendicular parallel micro-manipulation robot considering the motion in multiple nonfunctional directions and nonlinear hysteresis[J]. Journal of Mechanical Design,2023,145(5):053301. [22] WU T,CHEN J,CHANG S. A six-DOF prismatic-spherical-spherical parallel compliant nanopositioner[J]. IEEE Trans Ultrason Ferroelectr Freq Control,2008,55(12):2544-2551. [23] 王念峰,张志远,张宪民,等. 三种两自由度柔顺精密定位平台的性能对比与分析[J]. 机械工程学报,2018,54(13):102-109. WANG Nianfeng,ZHANG Zhiyuan,ZHANG Xianmin,et al. Performance comparison and analysis of three 2-DOF compliant precision positioning stages[J]. Journal of Mechanical Engineering,2018,54(13):102-109. [24] WANG R,WU H,WANG H,et al. Design and stiffness modeling of a four-degree-of-freedom nanopositioning stage based on six-branched-chain compliant parallel mechanisms[J]. Review of Scientific Instruments,2020,91(6):65002. [25] GAO J,HAN X,HAO L,et al. Design and analysis of a novel large-range 3-DOF compliant parallel micromanipulator[J]. Advances in Mechanical Engineering,2021,13(12):16878140211034444. [26] 黄真,李秦川. 少自由度并联机器人机构的型综合原理[J]. 中国科学E辑,2003,33(9):813-819. HUANG Zhen,LI Qinchuan. The principle of type synthesis of parallel robotic mechanism with less degrees of freedom[J]. Science in China (Series E),2003,33(9):813-819. [27] LIU Y,LI Y,YAO Y et al. Type synthesis of multi-mode mobile parallel mechanisms based on refined virtual chain approach[J]. Mechanism and Machine Theory,2020,152:103908. [28] SUN T,HUO X. Type synthesis of 1T2R parallel mechanisms with parasitic motions[J]. Mechanism and Machine Theory,2018,128:412-428. [29] WEI J,QIU C,DAI J. Configuration switch and path selection between Schönflies motion and non-Schönflies motion based on quotient manifold of novel reconfigurable parallel mechanisms[J]. Mechanism and Machine Theory,2023,180:105153. [30] HE J,GAO F,MENG X,et al. Type synthesis for 4-DOF parallel press mechanism using GF set theory[J]. Chinese Journal of Mechanical Engineering,2015,28(4):851-859. [31] LI H,LIU Y,WANG Z,et al. A constraint-flow based method of synthesizing XYθ compliant parallel mechanisms with decoupled motion and actuation characteristics[J]. Mechanism and Machine Theory,2022,178:105085. [32] WANG R,ZHANG X. Optimal design of a planar parallel 3-DOF nanopositioner with multi-objective[J]. Mechanism and Machine Theory,2017,112:61-83. [35] SCIRE F E,TEAGUE E C. Piezodriven 50-μm range stage with subnanometer resolution[J]. Review of Scientific Instruments,1978,49(12):1735-1740. [34] LUM G,TEO T,YEO S,et al. Structural optimization for flexure-based parallel mechanisms-towards achieving optimal dynamic and stiffness properties[J]. Precision Engineering,2015,42:195-207. [35] WANG R,ZHANG X. A planar 3-DOF nanopositioning platform with large magnification[J]. Precision Engineering,2016,46:221-231. [36] 李佳杰,陈贵敏. 柔性二级差动式微位移放大机构优化设计[J]. 机械工程学报,2019,55(21):21-28. LI Jiajie,CHEN Guimin. Optimal design of a compliant two-stage differential displacement amplification mechanism[J]. Journal of Mechanical Engineering,2019,55(21):21-28. [37] PHAM M,YEO S,TEO T,et al. Design and optimization of a three degrees-of-freedom spatial motion compliant parallel mechanism with fully decoupled motion characteristics[J]. Journal of Mechanisms and Robotics-Transactions of the ASME,2019,11(5):051010. [38] DANG M,DAO T,GIANG L. Optimal design of a new compliant XY micro positioning stage for nanoindentation tester using efficient approach of taguchi method,response surface method and NSGA-II[A] [C]//Proceedings 20184th International Conference on Green Technology and Sustainable Development,GTSD 2018. Ho Chi Minh City,Viet nam:Institute of Electrical and Electronics Engineers Inc.,2018:1-6. [39] HUANG S,DAO T. Multi-objective optimal design of a 2-DOF flexure-based mechanism using hybrid approach of grey-taguchi coupled response surface methodology and entropy measurement[J]. Arabian Journal for Science and Engineering,2016,41(12):5215-5231. [40] LING M,SONG D,ZHANG X,et al. Analysis and design of spatial compliant mechanisms using a 3-D dynamic stiffness model[J]. Mechanism And Machine Theory,2022,168:104581. [41] HUANG S,DAO T. Design and computational optimization of a flexure-based XY positioning platform using FEA-based response surface methodology[J]. International Journal of Precision Engineering and Manufacturing,2016,17(8):1035-1048. [42] KIM H,GWEON D. Development of a compact and long range XYθz nano-positioning stage[J]. Review of Scientific Instruments,2012,83(8):18-28. [43] 胡俊峰,张宪民. 3自由度精密定位平台的运动特性和优化设计[J]. 光学精密工程,2012,20(12):2686-2695. HU Junfeng,ZHANG Xianmin. Kinematical properties and optimal design of 3-DOF precision positioning stage[J]. Optics and Precision Engineering,2012,20(12):2686-2695. [44] TSAI L W,JOSHI S. Kinematics and optimization of a spatial 3-UPU parallel manipulator[J]. Journal of Mechanical Design,2000,122(4):439-446. [45] JIA X,TIAN Y,ZHANG D. Design and kinematics analysis of a 3-DOF precision positioning stage[C]//2009 International Conference on Mechatronics and Automation,IEEE,2009:3324-3329. [46] 李仕华,龚文,姜珊,等. 一种新型3-RPC柔性精密平台设计与分析[J]. 机械工程学报,2013,49(23):53-58. LI Shihua,GONG Wen,JIANG Shan,et al. Design and analysis of novel 3-RPC flexible precision platform[J]. Journal of Mechanical Engineering,2013,49(23):53-58. [47] DANG M,LE H,TRAN N,et al. Optimal design and analysis for a new 1-DOF compliant stage based on additive manufacturing method for testing medical specimens[J]. Symmetry,2022,14(6):1234. [48] YU S,MA J,WU H,et al. Robust precision motion control of piezoelectric actuators using fast nonsingular terminal sliding mode with time delay estimation[J]. Measurement and Control,2019,52(1-2):11-19. [49] TANG H,LI Y. Design,analysis,and test of a novel 2-DOF nanopositioning system driven by dual mode[J]. IEEE Transactions on Robotics,2013,29(3):650-662. [50] WANG C N,TRUONG K P,HUYNH N T. Optimization effects of design parameter on the first frequency modal of a Bridge-type compliant mechanism flexure hinge by using the Taguchi method[C]//Journal of Physics:Conference Series. IOP Publishing,2019,1303(1):012063. [51] LING M,ZHANG C,CHEN L. Optimized design of a compact multi-stage displacement amplification mechanism with enhanced efficiency[J]. Precision Engineering,2022,77:77-89. [52] LEE H,KIM H,KIM H,et al. Optimal design and experiment of a three-axis out-of-plane nano positioning stage using a new compact bridge-type displacement amplifier[J]. Review of Scientific Instruments,2013,84(11):115103. [53] SUN X,WANG Z,YANG Y. Design and experimental investigation of a novel compliant positioning stage with low-frequency vibration isolation capability[J]. Sensors And Actuators A-Physical,2019,295:439-449. [54] 林苗,孟刚,居勇健,等. 大行程解耦三平动微定位平台的设计与优化[J]. 北京航空航天大学学报,2022,48(7):1252-1262. LIN Miao,MENG Gang,JU Yongjian,et al. Design and optimization of large-stroke decoupled three-translational micro-positioning platform[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(7):1252-1262 [55] 林盛隆,张宪民,朱本亮. 高带宽两自由度并联柔顺精密定位平台的优化设计与实验[J]. 光学精密工程,2019,27(8):1774-1782. LIN Shenglong,ZHANG Xianmin,ZHU Benliang. Optimal design and experiment of a high-bandwidth two-degree of freedom parallel nanopositioning stage[J]. Optics and Precision Engineering,2019,27(8):1774-1782. [56] 王华,张宪民,欧阳高飞. 平面三自由度微动工作台的输入耦合分析[J]. 中国机械工程,2005,16(5):377-380. WANG Hua,ZHANG Xianmin,OUYANG Gaofei. Coupled input analysis of a planar 3-DOF micro-positioning stage[J]. China Mechanical Engineering,2005,16(5):377-380. [57] 王华,张宪民. 整体式空间3自由度精密定位平台的优化设计与试验[J]. 机械工程学报,2007,43(3):66-71. WANG Hua,ZHANG Xianmin. Optimal design and experimental research for monolithic space 3-DOF precise positioning stage[J]. Journal of Mechanical Engineering,2007,43(3):66-71. [58] 闫鹏,张立龙,刘鹏博. 具有耦合补偿功能的大行程二维柔性平台[J]. 光学精密工程,2016,24(4):804-811. YAN Peng,ZHANG Lilong,LIU Pengbo. Flexure-based XY micro-positioning stage with large stroke and coupling compensation[J]. Optics and Precision Engineering,2016,24(4):804-811. [59] LI Y,XU Q. A Totally decoupled piezo-driven xyz flexure parallel micropositioning stage for micro/nanomanipulation[J]. IEEE Transactions on Automation Science and Engineering,2011,8(2):265-279. [60] LI Y,XU Q. Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator[J]. IEEE Transactions on Robotics,2009,25(3):645-657. [61] LI Y,XU Q. A Novel piezoactuated xy stage with parallel,decoupled,and stacked flexure structure for micro-/nanopositioning[J]. IEEE Transactions on Industrial Electronics,2011,58(8):3601-3615. [62] ELMUSTAFA A,LAGALLY M. Flexural-hinge guided motion nanopositioner stage for precision machining:Finite element simulations[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology,2001,25(1):77-81. [63] LI S,ZHOU Y,SHAN Y,et al. Synthesis method of two translational compliant mechanisms with redundant actuation[J]. Mechanical Sciences,2021,12(2):983-995. [64] 王勇,刘和亮,刘正士,等. 二级杠杆式微牛级微力发生机构[J]. 光学精密工程,2018,26(10):2527-2535. WANG Yong,LIU Heliang,LIU Zhengshi,et al. Design and functional analysis of a micro-Newton force generator[J]. Optics and Precision Engineering,2018,26(10):2527-2535. [65] 占金青,龙良明,刘敏,等. 基于最大应力约束的柔顺机构拓扑优化设计[J]. 机械工程学报,2018,54(23):32-38. ZHAN Jinqing,LONG Liangming,LIU Min,et al. Topological design of compliant mechanisms with maximum stress constraint[J]. Journal of Mechanical Engineering,2018,54(23):32-38. [66] XU Z,HUANG X,XU F,et al. Parameters optimization of vibration isolation and mitigation system for precision platforms using non-dominated sorting genetic algorithm[J]. Mechanical Systems and Signal Processing,2019,128:191-201. [67] 田俊,张宪民. 基于柔顺机构的两自由度微动精密定位平台的分析与设计[J]. 机械设计与制造,2009(5):205-207. TIAN Jun,ZHANG Xianmin. Design and analysis of a two degree of freedom micro-positioning stage[J]. Machinery Design and Manufacture. 2009(5):205-207. [68] 曹毅,王保兴,孟刚,等. 大行程三平动柔性微定位平台的设计分析及优化[J]. 机械工程学报,2020,56(17):71-81. CAO Yi,WANG Baoxing,MENG Gang,et al. Design analysis and optimization of large range spatial translational compliant micro-positioning stage[J]. Journal of Mechanical Engineering,2020,56(17):71-81. [69] FLEMING A J. Nanopositioning system with force feedback for high-performance tracking and vibration control[J]. IEEE/ASME Transactions on Mechatronics,2010,15(3):433-47. [70] CHEN Z,ZHONG X,SHI J,et al. Damping-enabling technologies for broadband control of piezo-stages:A survey[J]. Annual Reviews in Control,2021,52:120-34. [71] CHEN Z,CHEN G,ZHANG X. Damping-enabling technologies for broadband[J]. Review of Scientific Instruments,2015,86(5):1. [72] CHEN Z,JIANG X,ZHANG X. Damped circular hinge with integrated comb-like substructures[J]. Precision Engineering,2018,53:212-20. [73] 神光- II"主机间接驱动冷冻演示实验靶的研制[EB/OL].[2018-11-19]. https://www.caep.ac.cn/doc/2020/01/06/721.shtml.Development of indirect drive refrigeration demonstration experimental target for Shenguang II Host[EB/OL].[2018-11-19] Https://www.caep.ac.cn/doc/2020/01/06/721.shtml. [74] DECHEV N,CLEGHORN W,MILLS J. Construction of a 3d mems microcoil using sequential robotic microassembly operations[C]//ASME International Mechanical Engineering Congress and Exposition,2003:125-131. [75] 王日鑫. 柔顺机构与驱动位姿显式拓扑优化方法研究[D].广州:华南理工大学,2021 WANG Rixin. Integrated layout design of compliant mechanisms and actuators using explicit topology optimization method[D]. Guangzhou:South China University of Technology,2021. [76] NAH S,ZHONG Z. A microgripper using piezoelectric actuation for micro-object manipulation[J]. Sensors and Actuators A:Physical,2007,133(1):218-224. [77] DAS T,SHIRINZADEH B,GHAFARIAN M,et al. Characterization of a compact piezoelectric actuated microgripper based on double-stair bridge-type mechanism[J]. Journal of Micro-Bio Robotics,2020,16(1):79-92. [78] SHI Q,YU Z,WANG H,et al. Development of a highly compact microgripper capable of online calibration for multisized microobject manipulation[J]. IEEE Transactions on Nanotechnology,2018,17(4):657-661. [79] CECIL J,POWELL D,VASQUEZ D. Assembly and manipulation of micro devices-A state of the art survey[J]. Robotics and Computer-Integrated Manufacturing,2007,23(5):580-588. [80] GAN J,XU H,ZHANG X,et al. Design of a compliant adjustable constant-force gripper based on circular beams[J]. Mechanism and Machine Theory,2022,173:104843. [81] LIU Y,ZHANG Y,XU Q. Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams[J]. IEEE/ASME Transactions on Mechatronics,2017,22(1):476-486. [82] WANG J,LAN C. A constant-force compliant gripper for handling objects of various sizes[J]. Journal of Mechanical Design,2014,136(7):1. [83] SIGMUND O. Design of multiphysics actuators using topology optimization-part i:One-material structures[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(49-50):6577-6604. [84] SIGMUND O. Design of multiphysics actuators using topology optimization-part ii:Two-material structures[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(49-50):6605-6627. [85] WANG R,ZHANG X,ZHU B,et al. Hybrid explicit-implicit topology optimization method for the integrated layout design of compliant mechanisms and actuators[J]. Mechanism and Machine Theory,2022,171:104750. [86] WANG N,CHEN B,GUO H,et al. Design of dielectric elastomer grippers using Bezier curves[J]. Mechanism and Machine Theory,2021,158:104216. [87] WANG Y,LUO Z,ZHANG X,et al. Topological design of compliant smart structures with embedded movable actuators[J]. Smart Materials and Structures,2014,23(4):045024. [88] LI H,CHEN Y,DAI L. Concentrated-mass cantilever enhances multiple harmonics in tapping-mode atomic force microscopy[J]. Applied Physics Letters,2008,92(15):151903. [89] ZHU B,ZIMMERMANN S,ZHANG X,et al. A systematic method for developing harmonic cantilevers for atomic force microscopy[J]. Journal of Mechanical Design,2017,139(1):012303. [90] SRIRAMSHANKAR R,JAYANTH G. Design and evaluation of torsional probes for multifrequency atomic force microscopy[J]. IEEE/ASME Transactions on Mechatronics,2014,20(4):1843-1853. [91] SONG J,MENG X,ZHANG H,et al. Probing multidimensional mechanical phenotyping of intracellular structures by viscoelastic spectroscopy[J]. ACS Applied Materials & Interfaces,2019,12(1):1913-1923. [92] ZHANG W,CHEN Y,LIU H,et al. Subsurface imaging of cavities in liquid by higher harmonic atomic force microscopy[J]. Applied Physics Letters,2018,113(19):193105. [93] HOU Y,MA C,WANG W,et al. Binary coded cantilevers for enhancing multi-harmonic atomic force microscopy[J]. Sensors and Actuators A:Physical,2019,300:111668. [94] CAI J,XIA Q,LUO Y,et al. A variable-width harmonic probe for multifrequency atomic force microscopy[J]. Applied Physics Letters,2015,106(7):071901. [95] GAO F,ZHANG Y. Enhancing the multiple harmonics by step-like cantilever[J]. AIP Advances,2018,8(4):045108. [96] ZHANG H,GAO H,GENG J,et al. Torsional harmonic kelvin probe force microscopy for high-sensitivity mapping of surface potential[J]. IEEE Transactions on Industrial Electronics,2021,69(2):1654-1662. [97] DHARMASENA S,YANG Z,KIM S,et al. Ultimate decoupling between surface topography and material functionality in atomic force microscopy using an inner-paddled cantilever[J]. ACS Nano,2018,12(6):5559-5569. [98] FENG K,GAO J,ZHU B,et al. Force modulation mode harmonic atomic force microscopy for enhanced image resolution of cell[C]//2022 IFToMM China InternationalConference on Mechanism and Machine Science & Engineering (CCMMS2022),July 30- August 1,Yantai,China,2022:1 [99] BALANTEKIN M,ONARAN A,DEGERTEKIN F. Quantitative mechanical characterization of materials at the nanoscale through direct measurement of time-resolved tip-sample interaction forces[J]. Nanotechnology,2008,19(8):085704. [100] SAHIN O,ERINA N. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy[J]. Nanotechnology,2008,19(44):445717. [101] GARCIA R,HERRUZO E. The emergence of multifrequency force microscopy[J]. Nature Nanotechnology,2012,7(4):217-226. [102] MANDRIOTA N,FRIEDSAM C,JONES-MOLINA J,et al. Cellular nanoscale stiffness patterns governed by intracellular forces[J]. Nature Materials,2019,18(10):1071-1077. [103] GARCIA R,PROKSCH R. Nanomechanical mapping of soft matter by bimodal force microscopy[J]. European Polymer Journal,2013,49(8):1897-1906. [104] AMO C A,PERRINO A P,PAYAM A F,et al. Mapping elastic properties of heterogeneous materials in liquid with angstrom-scale resolution[J]. ACS Nano,2017,11(9):8650-8659. [105] NGUYEN H,LIANG X,ITO M,et al. Direct mapping of nanoscale viscoelastic dynamics at nanofiller/polymer interfaces[J]. Macromolecules,2018,51(15):6085-6091. [106] SPITZNER E,RIESCH C,MAGERLE R. Subsurface imaging of soft polymeric materials with nanoscale resolution[J]. ACS Nano,2011,5(1):315-320. [107] ZANG H,ZHANG X,ZHU B,et al. Recent advances in non-contact force sensors used for micro/nano manipulation[J]. Sensors and Actuators A:Physical,2019,296:155-177. [108] ABBASI A,AHMADIAN M. Force controlled manipulation of biological cells using a monolithic mems based nano-micro gripper[C]//ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers,2012:193-201. [109] WANG D,YANG Q,DONG H. A monolithic compliant piezoelectric-driven microgripper:Design,modeling,and testing[J]. IEEE/ASME Transactions on Mechatronics,2011,18(1):138-147. [110] KIM K,LIU X,ZHANG Y,et al. Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback[J]. Journal of Micromechanics and Microengineering,2008,18(5):055013. [111] XU Q. Design,fabrication,and testing of a MEMS microgripper with dual-axis force sensor[J]. IEEE Sensors Journal,2015,15(10):6017-6026. [112] WEI Y,XU Q. Design of a PVDF-MFC force sensor for robot-assisted single cell microinjection[J]. IEEE Sensors Journal,2017,17(13):3975-3982. [113] PIRIYANONT B,FOWLER A G,MOHEIMANI S O R. Force-controlled MEMS rotary microgripper[J]. Journal of Microelectromechanical Systems,2015,24(4):1164-1172. [114] 陈忠,张宪民,周晓峰. 基于散斑数字图像相关的柔顺结构力传感单元设计与试验研究[J]. 机械工程学报,2013,49(9):12-16. CHEN Zhong,ZHANG Xianmin,ZHOU Xiaofeng. Design and experimental study of compliant structural force cell based on digital image correlation[J]. Journal of Mechanical Engineering,2013,49(9):12-16. [115] DSOUZA R,NAVIN K,THEODORIDIS T,et al. Design,fabrication and testing of a 2 DOF compliant flexural microgripper[J]. Microsystem Technologies,2018,24:3867-3883. [116] ZANG H,ZHANG X,ZHANG H,et al. A novel force sensor based on optical fibers used for semicircular flexure beam unit[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1-10. [117] CHEN W,ZHANG X,LI H,et al. Nonlinear analysis and optimal design of a novel piezoelectric-driven compliant microgripper[J]. Mechanism and Machine Theory,2017,118:32-52. [118] LIANG J,ZHANG X,ZHU B. Nonlinear topology optimization of parallel-grasping microgripper[J]. Precision Engineering,2019,60:152-159. [119] ZHU B,CHEN Q,LI H,et al. Design of planar large-deflection compliant mechanisms with decoupled multi-input-output using topology optimization[J]. Journal of Mechanisms and Robotics,2019,11(3):031015. [120] GAO W,KIM S,BOSSE H,et al. Measurement technologies for precision positioning[J]. CIRP Annals,2015,64(2):773-796. [121] OIWA T,KATSUKI M,KARITA M,et al. Questionnaire survey on ultra-precision positioning[J]. International Journal of Automation Technology,2011,5(6):766-772. [122] YAO S,LI H,PANG S,et al. A review of computer microvision-based precision motion measurement:Principles,characteristics,and applications[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1-28. [123] LU C P,HAGER G D,MJOLSNESS E. Fast and globally convergent pose estimation from video images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(6):610-622. [124] LEPETIT V,MORENO-NOGUER F,FUA P. EP n P:An accurate O(n) solution to the P n P problem[J]. Inter national Journal of Computer Vision,2009,81(2):155-166. [125] HARRIS C,STEPHENS M. A combined corner and edge detector[C]//Alvey Vision Conference,1988,23:1-26. [126] LI H,ZHANG X,ZENG L,et al. A monocular vision system for online pose measurement of a 3RRR planar parallel manipulator[J]. Journal of Intelligent & Robotic Systems,2018,92:3-17. [127] WU H,ZHANG X,GAN J,et al. Displacement measurement system for inverters using computer micro-vision[J]. Optics and Lasers in Engineering,2016,81:113-118. [128] WU H,ZHANG X,GAN J,et al. High-precision displacement measurement method for three degrees of freedom-compliant mechanisms based on computer micro-vision[J]. Applied Optics,2016,55(10):2594-2600. [129] PAN B,QIAN K,XIE H,et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement:A review[J]. Measurement Science and Technology,2009,20(6):062001. [130] LI H,ZHANG X,ZHU B,et al. Micro-motion detection of the 3-DOF precision positioning stage based on iterative optimized template matching[J]. Applied Optics,2017,56(34):9435-9443. [131] LI H,ZHANG X,ZHU B,et al. Online precise motion measurement of 3-DOF nanopositioners based on image correlation[J]. IEEE Transactions on Instrumentation and Measurement,2018,68(3):782-790. [132] LI H,ZHANG X,YAO S,et al. An improved template-matching-based pose tracking method for planar nanopositioning stages using enhanced correlation coefficient[J]. IEEE Sensors Journal,2020,20(12):6378-6387. [133] LI H,ZHU B,CHEN Z,et al. Realtime in-plane displacements tracking of the precision positioning stage based on computer micro-vision[J]. Mechanical Systems and Signal Processing,2019,124:111-123. [134] LI H,VON KLEIST-RETZOW F T,HAENSSLER O C,et al. Multi-target tracking for automated RF on-wafer probing based on template matching[C]//2019 International Conference on Manipulation,Automation and Robotics at Small Scales (MARSS). IEEE,2019:1-6. [135] REDDY B S,CHATTERJI B N. An FFT-based technique for translation,rotation,and scale-invariant image registration[J]. IEEE Transactions on Image Processing,1996,5(8):1266-1271. [136] ANDRÉ A N,SANDOZ P,MAUZÉ B,et al. Sensing one nanometer over ten centimeters:A microencoded target for visual in-plane position measurement[J]. IEEE/ASME Transactions on Mechatronics,2020,25(3):1193-1201. [137] GUELPA V,SANDOZ P,VERGARA M A,et al. 2D visual micro-position measurement based on intertwined twin-scale patterns[J]. Sensors and Actuators A Physical,2016,248:272-280. [138] YAO S,ZHANG X,ZHU B,et al. A microvision-based motion measurement system for nanopositioners using the feature-to-phase method[J]. IEEE Transactions on Instrumentation and Measurement,2023,72:1-11. [139] LUCAS B D,KANADE T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence. In:International Joint Conference on Artificial Intelligence,1981:674-679. [140] BOUGUET J Y. Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm[J]. Intel Corporation,2001,5(1-10):4. [141] FARNEBÄCK G. Two-frame motion estimation based on polynomial expansion[C]//Image Analysis:13th Scandinavian Conference,SCIA 2003 Halmstad,Sweden,June 29-July 2,2003 Proceedings 13. Springer Berlin Heidelberg,2003:363-370. [142] DEVASIA S,ELEFTHERIOU E,MOHEIMANI S O R. A survey of control issues in nanopositioning[J]. IEEE Transactions on Control Systems Technology,2007,15(5):802-823. [143] XU Q S. Precision position/force interaction control of a piezoelectric multimorph microgripper for microassembly[J]. IEEE Transactions on Automation Science and Engineering,2013,10(3):503-514. [144] GAN J,ZHANG X. A review of nonlinear hysteresis modeling and control of piezoelectric actuators[J]. AIP Advances,2019,9(4):040702. [145] GAN J,ZHANG X,WU H. Tracking control of piezoelectric actuators using a polynomial-based hysteresis model[J]. AIP Advances,2016,6(6):065204. [146] YANG C,VERNEEK N,XIA F,et al. Modeling and control of piezoelectric hysteresis:A polynomial-based fractional order disturbance compensation approach[J]. IEEE Transactions on Industrial Electronics,2021,68(4):3348-3358. [147] YANG C,YOUCEF-TOUMI K. Decoupled tracking and damping control of piezo-actuated nanopositioner enabled by multimode charge sensing[J]. Mechanical Systems and Signal Processing,2022,173:109046. [148] XIE Y,TAN Y,DONG R. Nonlinear modeling and decoupling control of XY micropositioning stages with piezoelectric actuators[J]. IEEE/ASME Transactions on Mechatronics,2013,18(3):821-832. [149] GAN J,ZHANG X,LI H,et al. Full closed-loop controls of micro/nano positioning system with nonlinear hysteresis using micro-vision system[J]. Sensors and Actuators A:Physical,2017,257:125-133. [150] ZHU W,YANG F,RUI X. Robust independent modal space control of a coupled nano-positi oning piezo-stage[J]. Mechanical Systems and Signal Processing,2018,106:466-478. [151] YANG Y,WEI Y,LOU J,et al. Development and precision position/force control of a new flexurebased microgripper[J]. Journal of Micromechanics and Microengineering,2016,26(1):015005. [152] LIANG C,WANG F,TIAN Y,et al. Development of a high speed and precision wire clamp with both position and force regulations[J]. Robotics and Computer- Integrated Manufacturing,2017,44:208-217. [153] XU Q. Robust impedance control of a compliant microgripper for high-speed position/force regulation[J]. IEEE Transactions on Industrial Electronics,2015,62(2):1201-1209. [154] CHOW Y,CHEN S,LIU C,et al. A high-throughput automated microinjection system for human cells with small size[J]. IEEE/ASME Transactions on Mechatronics,2015,21(2):838-850. [155] BAKTHAVATCHALAM M,TAHRI O,CHAUMETTE F. A direct dense visual servoing approach using photometric moments[J]. IEEE Transactions on Robotics,2018:1-14. [156] BATEUX Q,MARCHAND E. Histograms-based visual servoing[J]. IEEE Robotics and Automation Letters,2017,2(1):80-87. [157] SHA X,SUN H,ZHAO Y,et al. A review on microscopic visual servoing for micromanipulation systems:Applications in micromanufacturing,biological injection,and nanosensor assembly[J]. Micromachines,2019,10(12):843. [158] ZIMMERMANN S,TIEMERDING T,FATIKOW S. Automated robotic manipulation of individual colloidal particles using vision-based control[J]. IEEE/ASME Transactions on Mechatronics,2015,20(5):2031-2038. [159] SHI Q,YANG Z,GUO Y,et al. A vision-based automated manipulation system for the pick-up of carbon nanotubes[J]. IEEE/ASME Transactions on Mechatronics,2017,22(2):845-854 [160] YAO S,LI H,ZENG L,et al. Vision-based adaptive control of a 3-RRR parallel positioning system[J]. Science China Technological Sciences,2018,61:1253-1264. [161] 周丽平,张泉,孙志峻. 直线超声电动机驱动的平面3-PRR并联平台视觉精密定位[J]. 机械工程学报,2014,50(19):18-23. ZHOU Liping,ZHANG Quan,SUN Zhijun. Precision positioning of a 3-PRR planar parallel manipulator driven by linear ultrasonic motors based on machine vision[J]. Journal of Mechanical Engineering,2014,50(19):18-23. [162] TAMADAZTE B,LE-FORT P,MARCHAND E. A direct visual servoing scheme for automatic nanopositioning[J]. Mechatronics IEEE/ASME Transactions on,2012,17(4):728-736 [163] MARTURI N,TAMADAZTE B,DEMBELE S,et al. Image-guided nanopositioning scheme for SEM[J]. IEEE Transactions on Automation Science and Engineering,2016,15(1):45-56. [164] MARTURI N,TAMADAZTE B,DEMBELE S,et al. Visual servoing schemes for automatic nanopositioning under scanning electron microscope[C]//IEEE International Conference on Robotics and Automation,2014:981-986. [165] CUI L. Robust micro/nano-positioning by visual servoing[D]. Rennes:University Rennes,2016. |
[1] | XU Jie, GAO Jie, XIAO Mi, GAO Liang. Design of Compliant Mechanisms by Topology Optimization Based on Isogeometric Analysis [J]. Journal of Mechanical Engineering, 2024, 60(1): 137-148. |
[2] | ZHAN Jinqing, YAN Jiakun, PU Shengxin, ZHU Benliang, LIU Min. Topological Design of Electrothermomechanical Compliant Mechanisms Using Isogeomtric Analysis [J]. Journal of Mechanical Engineering, 2023, 59(21): 177-187. |
[3] | HE Changyan, YANG Yang. Multipoint Force-constrained Admittance Control for Retinal Surgical Robot [J]. Journal of Mechanical Engineering, 2021, 57(9): 12-18. |
[4] | ZHAN Jinqing, LIU Tianshu, LIU Min, ZHU Benliang. Topological Design of Compliant Mechanisms Considering Fatigue Constraints [J]. Journal of Mechanical Engineering, 2021, 57(3): 59-68. |
[5] | ZHU Benliang, ZHANG Xianmin, LI Hai, WANG Rixin, LIU Min, LI Hao. Topology Optimization of Multi-material Compliant Mechanisms Using Node-density Interpolation Scheme [J]. Journal of Mechanical Engineering, 2021, 57(15): 53-61. |
[6] | XIE Dan, HUANG Yonggang. Novel Model with Three Curvature Variables for Euler Beam under Large Deflection and Its Application in Planar Compliant Mechanisms [J]. Journal of Mechanical Engineering, 2021, 57(13): 144-152. |
[7] | CAO Yi, WANG Baoxing, MENG Gang, LIN Miao, ZHANG Hong. Design Analysis and Optimization of Large Range Spatial Translational Compliant Micro-positioning Stage [J]. Journal of Mechanical Engineering, 2020, 56(17): 71-81. |
[8] | ZHAN Jinqing, LONG Liangming, LIU Min, ZHANG Xianmin. Topological Design of Compliant Mechanisms with Maximum Stress Constraint [J]. Journal of Mechanical Engineering, 2018, 54(23): 32-38. |
[9] | LI Haiyang, HAO Guangbo, YU Jingjun, DENG Zilong, SONG Zengwang. Systematic Approach to the Design of Spatial Translational Compliant Parallel Mechanisms [J]. Journal of Mechanical Engineering, 2018, 54(13): 57-65. |
[10] | WANG Tianmiao, HAO Yufei, YANG Xingbang, WEN Li. Soft Robotics:Structure, Actuation, Sensing and Control [J]. Journal of Mechanical Engineering, 2017, 53(13): 1-13. |
[11] | ZHANG Yunzhi, ZHANG Xianmin, WEI Junyang. The Micro-scale Deformation of the Contact Surfaces in Precision Positioning Mechanism [J]. Journal of Mechanical Engineering, 2015, 51(13): 176-182. |
[12] | YU Jingjun, HAO Guangbo, CHEN Guimin, BI Shusheng. State-of-art of Compliant Mechanisms and Their Applications [J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68. |
[13] | ZHAO Jian;CHEN Guoxi;GAO Renjing;LIU Shutian. Nonlinear Snap-through Analysis of Magnetic-mechanical Based Large Stroke Multi-stable Mechanism [J]. , 2014, 50(20): 188-194. |
[14] | LI Qian;YU Yueqing;CHANG Xing. Dynamic Modeling and Analysis of Compliant Mechanisms Based on 2R Pseudo-rigid-body Model [J]. , 2012, 48(13): 40-48. |
[15] | YANG Jin;YIN Wensheng;ZHU Yu;HU Jinchun;DUAN Guanghong. Controller Bandwidth Optimization for Ultra-precision Position Stage [J]. , 2011, 47(16): 9-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||