Journal of Mechanical Engineering ›› 2020, Vol. 56 ›› Issue (11): 202-218.doi: 10.3901/JME.2020.11.202
Previous Articles Next Articles
ZHAO Linjie1,2, CHENG Jian1, CHEN Mingjun1, YUAN Xiaodong2, LIAO Wei2, YANG Hao1, LIU Qi1, WANG Haijun2
Received:
2019-08-16
Revised:
2019-12-04
Online:
2020-06-05
Published:
2020-06-12
CLC Number:
ZHAO Linjie, CHENG Jian, CHEN Mingjun, YUAN Xiaodong, LIAO Wei, YANG Hao, LIU Qi, WANG Haijun. New Progress of CO2 Laser Processing Techniquesfor Fused Silica Optics[J]. Journal of Mechanical Engineering, 2020, 56(11): 202-218.
[1] CAMP D W,KOZLOWSKI M R,SHEEHAN L M,et al. Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces[J]. Proc. SPIE,1998,3244:356-364. [2] HUNT J T. National ignition facility performance review 1999[R]. Livermore:Lawrence Livermore National Lab. (LLNL),2000. [3] SPAETH M L,WEGNER P J,SURATWALA T I,et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold[J]. Fusion Science and Technology,2016,69(1):265-294. [4] SUN L X,LIU H J,HUANG J,et al. Reaction ion etching process for improving laser damage resistance of fused silica optical surface[J]. Optics Express,2016,24(1):199-211. [5] SURATWALA T I,MILLER P E,BUDE J D,et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society,2011,94(2):416-428. [6] PRASAD R R,BRUERE J R,PETERSON J,et al. Enhanced performance of large 3ω optics using UV and IR lasers[J]. Proc. SPIE,2003,5273:288-295. [7] TEMPLE P A,LOWDERMILK W H,MILAM D. Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm[J]. Applied Optics,1982,21(18):3249-3255. [8] LIU C M,JIANG Y,LUO C S,et al. The structure evolution of fused silica induced by CO2 laser irradia-tion[J]. Chinese Physics Letters,2012,29(4):44211-44214. [9] SHEN N,MATTHEWS M J,FAIR J E,et al. Study of CO2 laser smoothing of surface roughness in fused silica[J]. Proc. SPIE,2009,7504:750411. [10] FOLTA J,NOSTRAND M,HONIG J,et al. Mitigation of laser damage on national ignition facility optics in volume production[J]. Proc. SPIE,2013,8885:88850Z. [11] Efficiency Improvements-2017:Automation Speeds and Smooths NIF's Optics Recycle Loop[EB/OL].[2019-09-29]. https://lasers.llnl.gov/news/efficiency-improvements/2017/october. [12] HEIDRICH S,RICHMANN A,SCHMITZ P,et al. Optics manufacturing by laser radiation[J]. Optics and Lasers in Engineering,2014,59(59):34-40. [13] WEINGARTEN C,ULUZ E,SCHMICKLER A,et al. Glass processing with pulsed CO2 laser radiation[J]. Applied Optics,2017,56(4):777-782. [14] ZHAO L J,CHENG J,CHEN M J,et al. Toward little heat-affected area of fused silica materials using short pulse and high power CO2 laser[J]. Results in Physics,2019,12:1363-1371. [15] ZHAO J,SULLIVAN J,ZAYAC J,et al. Structural modification of silica glass by laser scanning[J]. Journal of Applied Physics,2004,95(10):5475-5482. [16] DOUALLE T,GALLAIS L,CORMONT P,et al. Thermo-mechanical simulations of CO2 laser-fused silica interactions[J]. Journal of Applied Physics,2016,119(11):113106. [17] COLVIN J,SHESTAKOV A,LKEN J S,et al. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating[J]. Journal of Applied Physics,2011,109:053506. [18] MENDEZ E,NOWAK K M,BAKER H J,et al. Localized CO2 laser damage repair of fused silica optics[J]. Applied Optics,2006,45(21):5358-5367. [19] DOREMUS R H. Viscosity of silica[J]. Journal of App-lied Physics,2002,92(12):7619-7629. [20] SHEN N,MATTHEWS M J,FAIR J E,et al. Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica[J]. Applied Surface Science,2010,256(12):4031-4037. [21] MATTHEWS M J,YANG S T,SHEN N,et al. Micro-shaping,polishing,and damage repair of fused silica surfaces using focused infrared laser beams[J]. Advanced Engineering Materials,2015,17(3):247-252. [22] 于景侠. CO2激光辐照熔石英材料的热力学和动力学模拟[D]. 成都:电子科技大学,2015. YU Jingxia. Thermodynamic and kinetic Simulation on fused silica materials Irradiated by CO2 laser[D]. Chengdu:University of Electronic Science and Techno-logy,2015. [23] HE T,WEI C,JIANG Z,et al. Super-smooth surface demonstration and the physical mechanism of CO2 laser polishing of fused silica[J]. Optics Letters,2018,43(23):5777-5780. [24] FEIT M D,RUBENCHIK A M. Mechanisms of CO2 laser mitigation of laser damage growth in fused silica[J]. Proc. SPIE,2002,4932:91-102. [25] ROBIN L,COMBIS P,CORMONT P,et al. Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation[J]. Journal of Applied Physics,2012,111:063106. [26] NOWAK K M,BAKER H J,HALL D R. Analytical model for CO2 laser ablation of fused quartz[J]. Applied Optics,2015,54(29):8653-8663. [27] ZHAO L J,CHENG J,CHEN M J,et al. Formation mechanism of a smooth,defect-free surface of fused silica optics using rapid CO2 laser polishing[J]. International Journal of Extreme Manufacturing,2019,1(3):035001. [28] HEIDRICH S,WEINGARTEN C,WILLENBORG E,et al. Polishing and form correction with laser radiation[J]. Classical Optics,2014:OTu1B.4. [29] WEINGARTEN C,HEIDRICH S,WU Y,et al. Laser polishing of glass[J]. Proc. SPIE,2015,9633:963303. [30] HEIDRICH S,WEINGARTEN C,ULUZ E,et al. Glass processing with high power Q-switch CO2 laser radiation[C]// Lasers in Manufacturing Conference,2015. [31] HEIDRICH S,WILLENBORG E,WEINGARTEN C,et al. Laser polishing and laser form correction of fused silica optics[J]. Materialwissenschaft und Werkstofftechnik,2015,46(7):668-674. [32] WEINGARTEN C,SCHMICKLER A,WILLENBORG E,et al. Laser polishing and laser shape correction of optical glass[J]. Joural of Laser Physics,2017,29:011702. [33] HEIDRICH S,WILLENBORG E,RICHMANN A. Development of a laser based process chain for manufac-turing freeform optics[J]. Physics Procedia,2011,12:519-528. [34] FEIT M D,MATTHEWS M J,SOULES T F,et al. Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces[J]. Proc. SPIE,2010,7842:78420O. [35] TOOL A Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range[J]. Journal of the American Ceramic Society,1946,29(9):240-253. [36] LANCRY M,R GNIER E,POUMELLEC B. Fictive temperature in silica-based glasses and its application to optical fiber manufacturing[J]. Progress in Materials Science,2012,57(1):63-94. [37] 郑万国,祖小涛,袁晓东,等. 高功率固体激光装置的负载能力及其相关物理问题[M]. 北京:科学出版社,2014. ZHENG Wanguo,ZU Xiaotao,YUAN Xiaodong,et al. Damage resistance and physical problems of high power laser facilities[M]. Beijing:Science Press,2014. [38] J S,J Z,TD B. Measurement of thermally induced changes in the refractive index of glass caused by laser processing[J]. Applied Optics,2005,44(33):7173. [39] ZHANG C C,LIAO W,YANG K,et al. Fabrication of concave microlens arrays by local fictive temperature modification of fused silica[J]. Optics Letters,2017,42(6):1093-1096. [40] VIGNES R M,SOULES T F,STOLKEN J S,et al. Thermomechanical modeling of laser-induced structural relaxation and deformation of glass:volume changes in fused silica at high temperature[J]. Journal of the American Ceramic Society,2013,96(1):137-145. [41] DOUALLE T,GALLAIS L,CORMONT P,et al. Effect of annealing on the laser induced damage of polished and CO2 laser-processed fused silica surfaces[J]. Journal of Applied Physics,2016,119(21):213106. [42] BRUSASCO R M,PENETRANTE B,BUTLER J A,et al. Localized CO2 laser treatment for mitigation of 351 nm damage growth in fused silica[J]. Proc. SPIE,2001,4679:40-47. [43] ADAMS J J,BOLOURCHI M,BUDE J D,et al. Results of applying a non-evaporative mitigation technique to laser initiated surface damage on fused-silica[J]. Proc. SPIE,2010,7842:784223. [44] YANG S T,MATTHEWS M J,ELHADJ S,et al. Comparing the use of 4.6μm lasers versus 10.6μm lasers for mitigating damage site growth on fused silica surfaces[J]. Proc. SPIE,2010,7842:784219. [45] BASS I L,DRAGGOO V G,GUSS G M,et al. Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser[J]. Proc. SPIE,2006,6261:62612A. [46] STOLZ C J. The national ignition facility:The path to a carbon-free energy future[J]. Philos. Trans. A Math. Phys. Eng. Sci.,2012,370(1973):4115-4129. [47] PALMIER S,GALLAIS L,COMMANDRE M,et al. Optimization of a laser mitigation process in damaged fused silica[J]. Applied Surface Science,2009,255:5532-5536. [48] LAURENT G,PHILIPPE C,JEAN-LUC R. Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation[J]. Optics Express,2009,17(26):23488-23501. [49] GALLAIS L,CORMONT P,RULLIER J L. Birefrin-gence and residual stress induced by CO2 laser mitigation of damage growth in fused silica[J]. Proc. SPIE,2009,12(Suppl 1):75040Z. [50] CORMONT P,GALLAIS L,LAMAIGN RE L,et al. Impact of two CO2 laser heatings for damage repairing on fused silica surface[J]. Optics Express,2010,18(25):26068-26076. [51] DOUALLE T,GALLAIS L,MONNERET S,et al. CO2 laser microprocessing for laser damage growth mitigation of fused silica optics[J]. Optical Engineering,2017,56(1):011022. [52] DOUALLE T,GALLAIS L,MONNERET S,et al. Development of a laser damage growth mitigation process,based on CO2 laser micro processing,for the laser MegaJoule fused silica[J]. Proc. SPIE,2016,10014:1001407. [53] 黄进,吕海兵,叶琳,等. 利用CO2激光预处理提高熔石英基片的损伤阈值[J]. 中国激光,2007,34(05):723-727. HUANG Jin,LÜ Haibing,YE Lin,et al. Damage threshold improvement of fused sil ica chipby CO2 laser pretreat-ment[J]. Chinese Journal of Lasers,2007,34(5):723-727. [54] 蒋勇,贺少勃,袁晓东,等. CO2激光光栅式扫描修复熔石英表面缺陷的试验研究与数值模拟[J]. 物理学报,2014,63(6):068105. JIANG Yong,HE Shaobo,YUAN Xiaodong,et al. Experimental investigation and numerical simulation of defect elimination by CO2 laser raster scanning on fused silica[J]. Acta Physica Sinica,2014,63(6):068105. [55] LIAO W,ZHANG C,SUN X,et al. Full aperture CO2 laser process to improve laser damage resistance of fused silica optical surface[J]. Advances in Condensed Matter Physics,2014,2014:164-168. [56] JIANG Y,LIU C M,LUO C S,et al. Mitigation of laser damage growth in fused silica by using a non-evaporative technique[J]. Chinese Physics B,2012,21(5):316-322. [57] DAI W,XIANG X,JIANG Y,et al. Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica[J]. Optics and Lasers in Engineering,2011,49(2):273-280. [58] 蒋勇. 熔石英光学元件表面损伤修复的理论和试验研究[D]. 成都:电子科技大学,2012. JIANG Yong. Theoretical and experimental studies on surface damage repairs of fused silica optical components[D]. Chengdu:University of Electronic Science and Technology,2012. [59] ZHANG C C,LIAO W,ZHANG L J,et al. Investigation of control of residual stress induced by CO2 laser-based damage mitigation of fused silica optics[J]. Advances in Condensed Matter Physics,2014,2014:302-306. [60] SURATWALA T I,MILLER P E,FEIT M D,et al. Scratch forensics[J]. Optics and Photonics News,2008,20(9):12-15. [61] WONG L,SURATWALA T,FEIT M D,et al. The effect of HF-NH4F etching on the morphology of surface fractures on fused silica[J]. Journal of Non-Crystalline Solids,2009,355:797-810. [62] CORMONT P,CORBINEAU T,GALLAIS L,et al. Characterization of scratches on fused silica optics and a way to remove them[J]. Proc. SPIE,2012,8530:853026. [63] CORMONT P,BOURGEADE A,CAVARO S,et al. Relevance of carbon dioxide laser to remove scratches on large fused silica polished optics[J]. Advanced Enginee-ring Materials,2015,17(3):253-259. [64] CORMONT P,COMBIS P,GALLAIS L,et al. Removal of scratches on fused silica optics by using a CO2 laser[J]. Optics Express,2013,21(23):28272-28289. [65] LIU C M,YAN Z H,YANG L,et al. Mitigation scratch on fused silica optics using CO2 laser[J]. Optica Applicata,2016,XLVI(3):387-397. [66] MATTHEWS M J,ELHADJ S,GUSS G M,et al. Localized planarization of optical damage using laser-based chemical vapor deposition[J]. Proc. SPIE,2013,8885:888526. [67] MATTHEWS M J. Simulating laser-material interact-tions[J]. Laser Focus World,2015,51(8):33-38. [68] MATTHEWS M J,ELHADJ S,Localized atmospheric laser chemical vapor deposition:United States,2015/0064363 A1[P]. 2013-04-19. [69] ZHANG C,ZHANG L,JIANG X,et al. Influence of pulse length on heat affected zones of evaporatively-mitigated damages of fused silica optics by CO2 laser[J]. Optics and Lasers in Engineering,2020,125:105857. [70] MAKIN V S,PESTOV Y I. Formation of relief gratings and refractive-index gratings on quartz glass under the action of a the radiation of a TEA CO2 laser[J]. Journal of optical technology,2004,71(8):527-531. [71] JUNG S,LEE P A,KIM B H. Surface polishing of quartz-based microfluidic channels using CO2 laser[J]. Microfluidics and Nanofluidics,2016,20(6):84. [72] SERHATLIOGLU M,ORTA B,ELBUKEN C,et al. CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving[J]. Journal of Micro-mechanics and Microengineering,2016,26(11):115011. [73] CHOI H K,RYU J,KIM C,et al. Formation of micro-lens array using femtosecond and CO2 lasers[J]. Journal of Laser Micro Nanoengineering,2016,11(3):341. [74] KIM C,SOHN I-B,LEE Y J,et al. Fabrication of a fused silica based mold for the microlenticular lens array using a femtosecond laser and a CO2 laser[J]. Optical Materials Express,2014,4(11):2233-2240. [75] CHOI H,AHSAN M S,YOO D,et al. Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique[J]. Optics and Laser Technology,2015,75:63-70. [76] SOHN I B,YOO D,NOH Y C,et al. Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique[J]. Journal of the Korean Physical Society,2016,69(3):335-343. [77] NOWAK K M,BAKER H J,HALL D R. Pulsed-laser machining and polishing of silica micro-optical compo-nents using a CO2 laser and an acousto-optic modulator[J]. Proc. SPIE,2003:107-111. [78] NOWAK K M,BAKER H J,HALL D R. Efficient laser polishing of silica micro-optic components[J]. Applied Optics,2006,45(1):162-171. [79] SCHWARZ S,RUNG S,ESEN C,et al. Fabrication of a high-quality axicon by femtosecond laser ablation and CO2 laser polishing for quasi-Bessel beam generation[J]. Optics Express,2018,26(18):23287-23294. [80] ER I G,OZER M. Fiber optic polishing by CO2 lasers[C]// AIP Conference Proceedings,2007,794-794. [81] HEPTONSTALL A,BARTON M A,BELL A S,et al. Enhanced characteristics of fused silica fibers using laser polishing[J]. Classical and Quantum Gravity,2014,31(10):105006. [82] ŞIMŞEK E U,ŞIMŞEK B,ORTA B. CO2 laser polishing of conical shaped optical fiber deflectors[J]. Applied Physics B,2017,123(6):176. [83] WLODARCZYK K L,WESTON N J,ARDRON M,et al. Direct CO2 laser-based generation of holographic structures on the surface of glass[J]. Optics Express,2016,24(2):1447-1462. [84] CHEN D Z A,CHEN G. Measurement of silicon dioxide surface phonon-polariton propagation length by atten-uated total reflection[J]. Applied Physics Letters,2007,91(12):824-121. [85] KEILMANN F,BAI Y H. Periodic surface structures frozen into CO2 laser-melted quartz[J]. Applied Physics A,1982,29(1):9-18. [86] ZHANG C C,LIAO W,ZHANG L J,et al. Large-area uniform periodic microstructures on fused silica induced by surface phonon polaritons and incident laser[J]. Optics and Lasers in Engineering,2018,105:101-105. |
[1] | WU Shujing, WANG Dazhong, GU Guquan, HUANG Shuai, DONG Guojun, GUO guoqiang, AN Qinglong, LI Changhe. High-performance Machining of Complex Curved Surfaces in Multi-energy Fields: Key Technologies and Advancements [J]. Journal of Mechanical Engineering, 2024, 60(9): 152-167. |
[2] | WEN Qiuling, YANG Ye, HUANG Hui, HUANG Guoqin, HU Zhongwei, CHEN Jinhong, WANG Hui, WU Xian. Review of Research Progress in Laser-based Hybrid Machining of Hard and Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 168-188. |
[3] | JIANG Anna, YAN Lan, WANG Ningchang, JIANG Feng, LI Zhuo, WEN Qiuling, LU Xizhao, HUANG Hui. Research Status and Development Trends for Energy Field-assisted Laser Induced Plasma-assisted Ablation of Transparent Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 254-272. |
[4] | LI Li, WANG Yixuan, LUO Fen, ZHANG Wentao, ZHAO Wei, LI Xiaoqiang. Effect of Brazing Time on TiAl Joint Brazed with TiH2-65Ni+TiB2 Filler [J]. Journal of Mechanical Engineering, 2024, 60(8): 176-185. |
[5] | GU Yufen, LU Na, SHI Yu, SUN Qingling. Microstructure Characteristics of 16MnDR Steel Welded Joint and Its Corrosion Behavior in Hydrofluoric Acid Environment [J]. Journal of Mechanical Engineering, 2024, 60(8): 196-203. |
[6] | LI Kun, JI Chen, BAI Shengwen, JIANG Bin, PAN Fusheng. Research Status and Prospects of Wire-arc Additive Manufacturing Technology for High-performance Magnesium Alloys [J]. Journal of Mechanical Engineering, 2024, 60(7): 289-311. |
[7] | CHEN Wei, ZHAO Jie, ZHU Libin, CAO Haibo. Research Progress on Additive Manufacturing of Low Activation Steels [J]. Journal of Mechanical Engineering, 2024, 60(7): 312-333. |
[8] | ZHENG Yang, ZHAO Zihao, LIU Wei, YU Zhengzhe, NIU Wei, LEI Yiwen, SUN Ronglu. Research Progress in High-performance Mg Alloys Prepared by Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(7): 385-400. |
[9] | CUI Guihan, YANG Chunli. Strengthening and Toughening Mechanism of Weld Metals on GMAW-P of High Strength and High Toughness Welding Wire [J]. Journal of Mechanical Engineering, 2024, 60(4): 326-334. |
[10] | MA Yixing, YANG Yutao, GUAN Xiaohu, YANG Qi, ZHAO Tongxin. Microstructure and Interfacial Bonding Property of a Hot-roll-bonded TWIP/IF Steel Composite Plate [J]. Journal of Mechanical Engineering, 2024, 60(4): 345-356. |
[11] | RONG Peng, Cheng Jing, DENG Hongwen, TAO Changan, GAO Chuanyun, RAN Xianzhe, CHENG Xu, TANG Haibo, LIU Dong. Effect of Different Heat Treatments on Microstructure and Tensile Properties of TC4 Titanium Alloy Fabricated by Laser Directed Energy Deposition [J]. Journal of Mechanical Engineering, 2024, 60(20): 99-107. |
[12] | MAO Aiqin, CHEN Shijie, JIA Yanggang, SHAO Xia, QUAN Feng, ZHANG Hui, ZHANG Yiwei, JIN Ying, JIN Xia. Effect of Aluminum Content on Microstructure and Properties of Powder Metallurgy CoCrFeMnNi High-entropy Alloy [J]. Journal of Mechanical Engineering, 2024, 60(20): 134-143. |
[13] | CHU Qiang, YANG Xiawei, LI Wenya, FAN Wenlong, ZOU Yangfan, HAO Sijie. Microstructure Evolution and Strengthening Mechanism of the Probeless Friction Stir Spot Welding of a Al-Li Alloy [J]. Journal of Mechanical Engineering, 2024, 60(2): 150-158. |
[14] | GAO Kai, GU Hongli, LI Kun. Cr, Si Trace Elements on Steel/Aluminium Induction Hydrostatic Welding Joint Organization and Properties of the Impact [J]. Journal of Mechanical Engineering, 2024, 60(2): 178-187. |
[15] | ZHANG Jiahao, WANG Leilei, ZHANG Yanxiao, LI Yifan, WANG Xiaoming, ZHAN Xiaohong. Study on the Microstructure and Tensile Properties of TiC/TC4 Functionally Gradient Materials by Laser Melting Deposition [J]. Journal of Mechanical Engineering, 2024, 60(19): 356-366. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||