[1] YUAN Jing,WANG Yu,PENG Yizhen,et al. Weak fault detection and health degradation monitoring using customized standard multiwavelets[J]. Mechanical Systems and Signal Processing, 2017,94:384-399.
[2] LI Qing,JI Xia,LIANG S Y. Incipient fault feature extraction for rotating machinery based on improved AR-minimum entropy deconvolution combined with variational mode decomposition approach[J]. Entropy, 2017,19,317.
[3] 李宏坤,杨蕊,任远杰,等. 利用粒子滤波与谱峭度的滚动轴承故障诊断[J]. 机械工程学报, 2017, 53(3):63-72. LI Hongkun, YANG Rui, REN Yuanjie, et al. Rolling element bearing diagnosis using particle filter and Kurtogram[J]. Journal of Mechanical Engineering, 2017, 53(3):63-72.
[4] 何国林,丁康,林慧斌. 基于匹配追踪的齿轮箱耦合调制振动信号分离方法研究[J]. 机械工程学报, 2016, 52(1):102-108. HE Guolin,DING Kang,LIN Huibin. Matching pursuit method for coupling modulation signal separation of gearbox vibration[J]. Journal of Mechanical Engineering, 2016,52(1):102-108.
[5] WANG Shibin,HUANG Weiguo,ZHU Zhongkui. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis[J]. Mechanical Systems and Signal Processing,2011,25:1299-1320.
[6] LI Qing,LIANG S Y. Incipient fault diagnosis of rolling bearings based on impulse-step impact dictionary and re-weighted minimizing nonconvex penalty Lq regular technique[J]. Entropy,2017,19:421.
[7] ZHOU Haitao,CHEN Jin,DONG Guangming,et al. Detection and diagnosis of bearing faults using shift-invariant dictionary learning and hidden Markov model[J]. Mechanical Systems and Signal Processing,2016,72-73:65-79.
[8] FENG Zhipeng,LIANG Ming. Complex signal analysis for planetary gearbox fault diagnosis via shift invariant dictionary learning[J]. Measurement,2016,90:382-395.
[9] CUI Lingli,WANG Jing,LEE S. Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis[J]. Journal of Sound and Vibration,2014,333(10):2840-2862.
[10] TROPP J A. Just relax:convex programming methods for identifying sparse signals in noise[J]. IEEE Transactions on Information Theory,2006,52(3):1030-1051.
[11] BACH F,JENATTON R,MAIRAL J,et al. Optimization with sparsity-inducing penalties[J]. Foundations and Trends in Machine Learning,2012,4(1):1-106.
[12] JOJIC V,SARIA S,KOLLER D. Convex envelopes of complexity controlling penalties:The case against premature envelopment[J]. Journal of Machine Learning Research,2011,15:399-406.
[13] CHARTRAND R. Nonconvex splitting for regularized low rank + sparse decomposition[J]. IEEE Transactions on Signal Processing,2012,60(11):5810-5819.
[14] WOODWORTH J,CHARTRAND R. Compressed sensing recovery via nonconvex shrinkage penalties[J]. IEEE Transactions on Information Theory,2015,11:1-29.
[15] CANDES E J,WAKIN M B,BOYD S P. Enhancing sparsity by reweighted L1 minimization[J]. The Journal of Fourier Analysis and Applications,2008,14(5):877-905.
[16] LORENZ D A. Non-convex variational denoising of images:Interpolation between hard and soft wavelet shrinkage[J]. Current Development in Theory and Application of Wavelets,2007,1(1):31-56.
[17] WIPF D,NAGARAJAN S. Iterative reweighted L1 and L2 methods for finding sparse solutions[J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2):317-329.
[18] NIKOLOVA M. Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares[J]. Multiscale Modeling and Simulation, 2005,4(3):960-991.
[19] SELESNICK I W,BAYRAM I. Sparse signal estimation by maximally sparse convex optimization[J]. IEEE Transactions on Signal Processing,2014,62:1078-1092.
[20] ECKSTEIN J,Bertsekas D P. On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators[J]. Mathematical Programming,1992,55(1-3):293-318.
[21] LUO Minnan,ZHANG Lingling,LIU Jun,et al. Distributed extreme learning machine with alternating direction method of multiplier[J]. Neurocomputing,2017,261:164-170.
[22] DONOHO D L,JOHNSTONE L M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika,1993, 81:425-455.
[23] DING Yin,HE Wangpeng,CHEN Binqiang,et al. Detection of faults in rotating machinery using periodic time-frequency sparsity[J]. Journal of Sound and Vibration,2016,382:357-378.
[24] Bearing Data Center. Case western reserve university.[2017-09-01]. http://csegroups.case.edu/bearingdatacenter/pages/apparatus-procedures.
[25] GUO Wei,TSE P W,DJORDJEVICH A. Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition[J]. Measurement,2012,45(5):1308-1322.
[26] SAWALHI N,RANDALL R B,ENDO H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing,2007,21(6):2616-2633. |