[1] VILLANI L, de SCHUTTER J. Force control[M]. London:Springer International Publishing, 2016. [2] LEE S. Development of a new variable remote center compliance (VRCC) with modified elastomer shear pad (ESP) for robot assembly[J]. IEEE Transactions on Automation Science and Engineering, 2005, 2(2):193-197. [3] SADEGHIAN H, VILLANI L, KESHMIRI M, et al. Task-space control of robot manipulators with null-space compliance[J]. IEEE Transactions on Robotics, 2014, 30(2):493-506. [4] LOSKE J, BIESENBACH R. Force-torque sensor integration in industrial robot control[C]//Research and Education in Mechatronics (REM), 201415th International Workshop on. IEEE, 2014:1-5. [5] DAI F, WAHRBURG A, MATTHIAS B, et al. Robot assembly skills based on compliant motion[C]//ISR 2016:47st International Symposium on Robotics; Proceedings of. VDE, 2016:1-6. [6] 姚建涛,崔朋肖,朱佳龙,等. 预紧式并联六维力传感器容错测量机理与标定测试研究[J]. 机械工程学报, 2016, 52(8):58-66. YAO Jiantao, CUI Pengxiao, ZHU Jialong, et al. Fault-tolerant measurement mechanism and calibration experimental study of pre-stressed parallel six-axis force sensor[J]. Journal of Mechanical Engineering, 2016, 52(8):58-66. [7] SHETTY B R, ANG Jr M H. Active compliance control of a PUMA 560 robot[C]//1996 IEEE International Conference on Robotics and Automation. Minneapolis, Minnesota, USA, 1996, 4:3720-3725. [8] 张立建,胡瑞钦,易旺民. 基于六维力传感器的工业机器人末端负载受力感知研究[J]. 自动化学报, 2017, 43(3):439-447. ZHANG Lijian, HU Ruiqin, YI Wangmin. Research on force sensing for the end-load of industrial robot based on a 6-axis force/torque sensor[J]. Acta Automatica Sinica, 2017, 43(3):439-447. [9] HONGAN N. Impedance control an approach to manipulation:'Part I-theory, Part Ⅱ-implementation, Part Ⅲ-Applcation[J]. J. Dyn. Sys. Meas. Cont., 1985:1-24. [10] KAZEROONI H, HOUPT P K, SHERIDAN T B. Robust compliant motion for manipulators. Part I:The fundamental concepts of compliant motion. part ii:Design methods[J]. IEEE J. Robotic Automat, 1986, RA-2(2):83-105. [11] FOCCHI M, MEDRANO C G A, BOAVENTURA T, et al. Robot impedance control and passivity analysis with inner torque and velocity feedback loops[J]. Control Theory and Technology, 2016, 14(2):97-112. [12] RAIBERT M H, CRAIG J J. Hybrid position/force control of manipulators[J]. Journal of Dynamic Systems Measurement and Control, 1980, 103(2):126-133. [13] 陈钢,王玉琦,贾庆轩,等. 机器航天员轴孔装配过程中的力位混合控制方法[J]. 宇航学报, 2017, 38(4):410-419. CHEN Gang, WANG Yuqi, JIA Qingxuan, et al. Hybrid force and position control strategy of robonaut performing peg-in-hole assembly task[J]. Journal of Astronautics, 2017, 38(4):410-419. [14] CHAUDHARY H, PANWAR V, PRASAD R, et al. Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator[J]. Journal of Intelligent Manufacturing, 2016, 27(6):1299-1308. [15] 肖丽芳. 基于光纤力传感器的机器人针穿刺阻抗控制研究[D]. 北京:北京交通大学, 2017. XIAO Lifang. Research on impedance control of robotic needle insertion with a fiber optic force sensor[D]. Beijing:Beijing Jiaotong University, 2017. [16] KIM S, KIM J P, RYU J. Adaptive energy-bounding approach for robustly stable interaction control of impedance-controlled industrial robot with uncertain environments[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(4):1195-1205. [17] 常健,王亚珍,李斌. 基于力/位混合算法的7自由度机器人精细操控方法[J]. 机器人, 2016, 38(5):531-539. CHANG Jian, WANG Yazhen, LI Bin. Accurate operation control method based on hybrid force/position algorithm for 7-DOF manipulator[J]. Robot, 2016, 38(5):531-539. [18] NIKOLEIZIG S, VICK A, KRUGER J. Compensating human feedback oscillation in compliance control for industrial robots[C]//International Conference on Control, Automation and Robotics. 2017:221-224. [19] 张永贵,刘晨荣,刘鹏. 6R工业机器人刚度分析[J]. 机械设计与制造, 2015(2):257-260. ZHANG Yonggui, LIU Chenrong, LIU Peng. 6R industrial robot stiffness analysis[J]. Machinery Design & Manufacture, 2015(2):257-260. [20] KROGER T, KUBUS D, WAHL F M. 6D force and acceleration sensor fusion for compliant manipulation control[C]//Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE, 2006:2626-2631. [21] POLVERINI M P, ROSSI R, MORANDI G, et al. Performance improvement of implicit integral robot force control through constraint-based optimization[C]//Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016:3368-3373. |