Effects of Wave on Motion Responses and Wake Evolution Mechanisms in Floating Offshore Wind Turbines under Coupled Wind-wave Condition
WEI Shangshang1, LI Zhihan1, GAO Xianhua2, WANG Xin1, LIU Huiwen1, XU Chang1
1. College of Renewable Energy, Hohai University, Changzhou 213200; 2. School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing 210096
WEI Shangshang, LI Zhihan, GAO Xianhua, WANG Xin, LIU Huiwen, XU Chang. Effects of Wave on Motion Responses and Wake Evolution Mechanisms in Floating Offshore Wind Turbines under Coupled Wind-wave Condition[J]. Journal of Mechanical Engineering, 2025, 61(20): 154-164.
[1] 温斌荣,田新亮,李占伟,等. 大型漂浮式风电装备耦合动力学研究:历史、进展与挑战[J]. 力学进展,2022,52(4):731-808. WEN Binrong,TIAN Xinliang,LI Zhanwei,et al. Coupling dynamics of floating wind turbines:History,progress and challenges[J]. Advances in Mechanics,2022,52(4):731-808. [2] 任年鑫,李玉刚,欧进萍. 浮式海上风力机叶片气动性能的流固耦合分析[J]. 计算力学学报,2014,31(1):91-95. REN Nianxin,LI Yugang,OU Jinping. The fluid structure interaction analysis of aerodynamic performance of floating offshore wind turbine blade[J]. Chinese Journal of Computational Mechanics. 2014,31(1):91-95. [3] EDWARDS E,HOLCOMBE A,BROWN S,et al. Trends in floating offshore wind platforms:A review of early-stage devices[J]. Renewable & Sustainable Energy Reviews,2023,183:113416. [4] BAYATI I,BELLOLI M,BERNINI L,et al. Aerodynamic design methodology for wind tunnel tests of wind turbine rotors[J]. Journal of Wind Engineering and Industrial Aerodynamics,2017,167:217-227. [5] TRAN T T,KIM D H. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach[J]. Renewable energy,2016,92:244-261. [6] LIANG X,LI Z,HAN X,et al. Study on aerodynamic performance and wake characteristics of a floating offshore wind turbine in wind-wave coupling field[J]. Sustainability,2024,16(13):5324. [7] CHENG P,HUANG Y,WAN D. A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine[J]. Ocean Engineering,2019,173:183-196 [8] YU Z,MA Q,ZHENG X,et al. A hybrid numerical model for simulating aero-elastic-hydro-mooring-wake dynamic responses of floating offshore wind turbine[J]. Ocean Engineering,2023,268:113050. [9] CAI Y,LI X,ZHAO H,et al. Developing a multi-region coupled analysis method for floating offshore wind turbine based on OpenFOAM[J]. Renewable Energy,2025,238:122026. [10] YANG Y,BASHIR M,MICHAILIDES C,et al. Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines[J]. Renewable Energy,2020,161(12):606-625. [11] NEMATBAKHSH A,OLINGER D J,TRYGGVASON G. Nonlinear simulation of a spar buoy floating wind turbine under extreme ocean conditions[J]. Journal of Renewable and Sustainable Energy,2014,6(3):033121. [12] LIU B,YU J. Dynamic response of SPAR-type floating offshore wind turbine under wave group scenarios[J]. Energies,2022,15(13):4870. [13] YANG Y,BASHIR M,WANG J,et al. Wind-wave coupling effects on the fatigue damage of tendons for a 10 MW multi-body floating wind turbine[J]. Ocean Engineering,2020,217:107909. [14] LIU S,XIN Z,WANG L,et al. Fluid-structure interaction simulation of dynamic response and wake of floating offshore wind turbine considering tower shadow effect[J]. Acta Mechanica Sinica,2024,40:323567. [15] ZHOU Y,XIAO Q,LIU Y,et al. Numerical modelling of dynamic responses of a floating offshore wind turbine subject to focused waves[J]. Energies,2019,12(18):3482. [16] ZHANG Y,KIM B. A fully coupled computational fluid dynamics method for analysis of semi-submersible floating offshore wind turbines under wind-wave excitation conditions based on OC5 data[J]. Applied Sciences,2018,8(11):2314. [17] 黄浩达,刘青松,岳敏楠,等. 半潜式海上漂浮式风力机气-水动全耦合分析[J]. 中国电机工程学报,2024,44(11):4367-4375. HUANG Haoda,LIU Qingsong,YUE Minnan,et al. Fully coupled aero-hydrodynamic analysis of a semi-submersible floating offshore wind turbine[J]. Proceedings of the Chinese Society of Electrical Engineering,2024,44(11):4367-4375. [18] 朱海波,黄浩达,缪维跑,等. 风波联合作用下单柱式漂浮风力机气-水动耦合分析[J]. 热能动力工程,2024,39(12):150-158. ZHU Haibo,HUANG Haoda,MIAO Weipao,et al. Analysis of aero-hydrodynamic coupling of a mono-pile type floatingwind turbine under the combined wind and wave[J]. Journal of Engineering for Thermal Energy and Power,2024,9(12):150-158. [19] SHUR M L,SPALART PR,STRELETS M K,et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow,2008,29(6):1638-1649. [20] LEI H,ZHOU D,LU J,et al. The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine [J]. Energy,2017,119:369-383. [21] JONKMAN J,BUTTERFIELD S,MUSIAL W,et al. Definition of a 5-MW reference wind turbine for offshoresystem development[R]. National Renewable Energy Lab. (NREL),Golden,CO(United States),2009. [22] TRAN T,KIM D. The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions[J]. Journal of Mechanical Science and Technology,2015,29(2):549-561. [23] JONKMAN J,MUSIAL W. Offshore code comparison collaboration (OC3) for IEA Wind Task 23 offshore wind technology and deployment[R]. National Renewable Energy Lab.(NREL),Golden,CO (United States), 2010.