[1] COCKER T L, JELIC V, HILLENBRAND R, et al. Nanoscale terahertz scanning probe microscopy[J]. Nature Photonics, 2021, 15(8): 558-569. [2] ZHANG X Q, XU Q, XIA L B, et al. Terahertz surface plasmonic waves: A review[J]. Advanced Photonics, 2020, 2(1): 014001. [3] 姚建铨. 太赫兹技术及其应用[J]. 重庆邮电大学学报, 2010, 22(6): 703-707. YAO Jianquan. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Postsand Telecommunications, 2010, 22(6): 703-707. [4] NAGATSUMA T, DUCOURNAU G, RENAUD C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 2016, 10(6): 371-379. [5] ZHONG S C. Progress in terahertz nondestructive testing: A review[J]. Front. Mech. Eng, 2019, 14(3): 273-281. [6] YAN Z, ZHU L G, MENG K, et al. THz medical imaging: From in vitro to in vivo[J]. Trends in Biotechnology, 2022, 40(7): 816-830. [7] COCKER T L, JELIC V, GUPTA M, et al. An ultrafast terahertz scanning tunnelling microscope[J]. Nature Photonics, 2013 7(8): 620-625. [8] ZHUANG X L, ZHANG W, WANG K M, et al. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface[J]. Light-Science & Applications, 2023, 12(1): 2095-5545. [9] WANG Q, GAO B, RAGLIONE M, et al. Design, fabrication, and modulation of THz bandpass metamaterials[J]. Laser Photon. Rev, 2019, 13(11): 1900071. [10] WANG D X, XU K D, LUO S Y, et al. A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics[J]. Nanoscale, 2023, 15(7): 3398-3407. [11] DEGL'INNOCENTI R, LIN H Y, NAVARRO-CÍA M. Recent progress in terahertz metamaterial modulators[J]. Nanophotonics, 2022, 11(8): 1485-1514. [12] CHEN Y, AI B, WONG Z J. Soft optical metamaterials[J]. Nano Convergence, 2020, 7(1): 18. [13] LI W, XU M, XU H X, et al. Metamaterial absorbers: From tunable surface to structural transformation[J]. Adv Mater, 2022, 34(38): 2202509. [14] HUANG Y, ZHONG S, SHI T, et al. HR-Si prism coupled tightly confined spoof surface plasmon polaritons mode for terahertz sensing[J]. Optics. Express, 2019, 27(23): 34067-34078. [15] LIN T, HUANG Y, ZHONG S, et al. Field manipulation of electromagnetically induced transparency analogue in terahertz metamaterials for enhancing liquid sensing[J]. Optics and Lasers in Engineering, 2022, 157: 107127. [16] QING Y M, REN Y, LEI D, et al. Strong coupling in two-dimensional materials-based nanostructures: A review[J]. Journal of Optics, 2022, 24(2): 024009. [17] 郭建勇, 梁庆宣, 江子杰, 等. 一种熔融沉积3D打印的高性能超材料吸波结构[J]. 机械工程学报, 2019, 55(23): 226-232. GUO Jianyong, LIANG Qingxuan, JIANG Zijie, et al. A High-performance metamaterials absorbing structures based on fused deposition modeling[J]. Journal of Mechanical Engineering, 2019, 55(23): 226-232. [18] ABUJETAS D R, VAN HOOF N, HUURNE S, et al. Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces[J]. Optica, 2019, 6(8): 996-1001. [19] LIU D, YU X, WU F, et al. Terahertz high-Q quasi-bound states in the continuum in laser-fabricated metallic double-slit arrays[J]. Optics Express, 2021, 29(16): 24779-24791. [20] YU R, ALAEE R, LEDERER F, et al. Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene[J]. Physical Review B, 2014, 90(8): 085409. [21] ZHAO X, CHEN C, KAJ K, et al. Terahertz investigation of bound states in the continuum of metallic metasurfaces[J]. Optica, 2020, 7(11): 1548-1554. [22] 韩利, 邢怀中. 黑磷纳米盘-层等离激元系统中的各向异性可调多阶强耦合[J]. 红外与毫米波学报, 2022, 41(3): 652-658. HAN Li, XING Huaizhong. Anisotropic tunable multi-order strong coupling in black phosphorous nanodisk-sheet plasmonic system[J]. Journal of Infrared Millimeter Waves, 2022, 41(3): 652-658. [23] 张星源, 谷建强, 师文桥. 基于金属裂环谐振器的太赫兹连续域束缚态超表面[J]. 中国激光, 2023, 50(2): 139-147. ZHANG Xingyuan, GU Jianqiang, SHI Wenqiao. Terahertz metasurface with bound states in continuum based on metal split ring resonator[J]. Chinese of Journal of Lasers, 2023, 50(2): 139-147. [24] 杜云峰, 姜交来, 廖俊生. 超材料的应用及制备技术研究进展[J]. 材料导报, 2016(9): 115-121. DU Yunfeng, JIANG Jiaolai, LIAO Junsheng. Review on fabrication and application of metamaterial[J]. Materials Reports, 2016(9): 115-121. [25] ZHANG C, MCKEON L, KREMER M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications, 2019, 10(1): 1795. [26] CHEN C, KUONG C N, ZHANG F, et al. Towards obtaining high-quality surfaces with nanometric finish by femtosecond laser ablation: A case study on coppers[J]. Optics & Laser Technology, 2022, 155: 108382. [27] DUAN L, ZHOU H, DUAN J A. Micro-groove manufacturing via a femtosecond laser on optically clear adhesive films[J]. Applied Surface Science, 2022, 604: 154439. [28] ZOU T, ZHAO B, XIN W, et al. Birefringent response of graphene oxide film structurized via femtosecond laser[J]. Nano Research, 2021, 15(5): 4490-4499. [29] 赵圆圆, 金峰, 董贤子, 等. 飞秒激光双光子聚合三维微纳结构加工技术[J]. 光电工程, 2023, 50(3): 1-34. ZHAO Yuanyuan, JIN Feng, DONG Xianzi, et al. Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology[J]. Optp-Electronic Engineering, 2023, 50(3): 1-34. [30] HAN N R, CHEN Z C, LIM C S, et al. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates[J]. Optics Express, 2011, 19(8): 6990-6998. [31] LIN Y, YAO H, JU X, et al. Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining[J]. Optics Express, 2017, 25(21): 25125-25134. [32] PITCHAPPA P, KUMAR A, LIANG H D, et al. Frequency-agile temporal terahertz metamaterials[J]. Advanced Optical Materials, 2020, 8(12): 2000101. [33] GARCIA-VIDAL F J, MORENO E, PORTO J A, et al. Transmission of light through a single rectangular hole[J]. Phys Rev Lett, 2005, 95(10): 103901. [34] YAHIAOUI R, CHASE Z A, KYAW C, et al. Dicke-cooperativity-assisted ultrastrong coupling enhancement in terahertz metasurfaces[J]. Nano Letters, 2022, 22(24): 9788-9794. |